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A number of new generally covariant identities which involve second derivatives of the Riemann
tensor are presented. Each of these new identities can be expressed by equating to zero either (a) a
particular sum of terms each of which contains an operator of the form (y,v, — v,V ) acting on
the Riemann tensor; or (b) a particular sum of terms each of which contains an operator of the form
V. acting either on the expression (V R, U VoR uar’ + VLR gur ) Or on the expression

(VR apro + VaR uoro + VaR gure); 01 () a particular sum of algebraic terms each of which
contains no derivatives of the Riemann tensor, but rather is quadratic in the Riemann tensor. Each
of the new identities can be expressed in all three of the above-described forms. Furthermore, each of
these new identitites can be thought of as an integrability condition derived from the equations that
define the Riemann tensor in terms of the T'J; or the g . The requirements of Riquier’s existence
theorem are used to guide the derivation of the identities. The operator y, denotes covariant
differentiation. All the new identities assume the existence of a symmetric connection I' ; and one of
the new identities assumes the existence of a metric. Schouten’s identity and Walker’s identity are

also discussed.

1. INTRODUCTION

Einstein's nonvacuum field equations may be written
in the form (1. 1a) below
(—&)Y2(RW — ;gwR) = — 8n(—g)V/2Tw,

p=1,...,4. (l.1a)

These equations imply the law of conservation of energy-
momentum

[(_g)l/ZT;w];” =0, B = 17-'-74’ (1'1b)
and the algebraic equations
Tl =0, p=1,...,4, (1.1c)

Now Eq. (1. 1b) is usually thought of as a restriction on
the energy-momentum tensor 7#, However, one can

also think of Eq. (1. 1b) as restricting only the metric,
and it is possible to show! that one can give the quantities
(—g)/2Tw arbitrarily as functions of the x# and still be
certain of the existence of a solution to Eqgs. (1.1a) and
(1.1b) provided only that the given quantities satisfy the
algebraic restriction (1. 1c).

It can also be shownl that Egs. (1. 1b) and (1. 1¢) are
integrability conditions for the system (1, 1a) in the case
where the quantities (— g)1/2 7w are taken as the given
functions.

Consider the system of equations which define the
Riemann tensor

1
ahll"““\a + FP[DOCF“]XP = ERV}J)\“’“ = 1’ ,,.’n,

n=4. (1.2a)
(Please refer to the Appendix for an explanation of the
bracket notation used here.) In the present note, the
attempt will be made to examine Egs. (1, 2) from the
same standpoint as that just used to describe Egs. (1. 1a)
above,

One tries then to think of the components of the Rie-
mann tensor in Eq. (1. 2a) as being given while the T, °
are the unknown functions. It is well known?2 that this
viewpoint leads to the Bianchi identities

a[aRup])\w - r)\[ap Ryp]pw + rp[awRup])\p =0 (1.2b)
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as the integrability conditions of the system (1. 2a). In
Eq. (1. 2b), the Ry“pw are given functions of x, and the
symmetric I’y # are unknowns. Equations (1. 2b) are
algebraic equations for the I') °. Or in the terminology
of Ref, 3, they contain only the zeroth-order derivatives
of the I', r.

Following the method described on p. 1544 of Ref. 1,
combine Eq.(1.2b) with Eq. (1. 2a) and consider the
integrability conditions of the combined system, Eq. (1. 2).
Ones hope would be to prove that Eq. (1.2a) has (in the
terminology of Ref. 1) integrability of the second kind, A
familiarity with Riquier's procedure for deriving integr-
ability conditions leads to the following conjectures about
the nature of the integrability conditions of the system
(1.2). First, the integrability conditions should be
generally covariant. Second, they should involve first
derivatives of Eq.(1.2b). [They should not involve first
derivatives of Eq.(1.2a).] In addition, many of these
integrability conditions should be quadratic identities on
the Riemann tensor.

In order to clearly understand the procedure being u
used here, note that when considering the integrability of
the system (1. 1), there are two different integrability
problems that can be solved. One is the problem which
takes Eq.(1.1b) as a restriction on the derivatives
TH 4’ 4 48 is usually done. The other is the problem which
takes Eq. (1.1b) as a restriction on the derivatives

&4,4+

Similarly, when one is considering the integrability of
the system (1. 2), there are two different integrability
problems that can be solved, One is the problem which
takes Eq.(1.2b) as a restriction on certain of the deriva-
tives o,R,,“. The other is the problem which takes
Eq.(1.2b) as a restriction on certain of the I‘paw and
leaves the 0, R, ,“ to be chosen as freely as possible.
The first integrability problem for the system (1. 2) has
been discussed in Reference 2, p. 146, and in Ref. 4. The
second integrability problem for the system (1, 2) is
discussed (but not solved) in the present paper.

Thus, the proof of integrability of the system (1. 2a)
in the inhomogeneous case (case of nonzero curvature)
has two steps. The second step has two branchs. The
first branch is well-known and has been thoroughly in-
vestigated, The second branch, which has been largely
overlooked, is discussed in the present paper.
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Please note also that in the present discussion, when
an equation is an integrability condition in the sense of
Riquier, it will be called an integrability condition
whether it is identically satisfied or not. Many well-
known authors are in the habit of saying that an equation
like Eq. (3. 1) of Sec.3 is not an integrability condition
merely because it is identically satisfied. (See Ref. 5)
This practice (which is contrary to Riquier's practice)
leads to minor confusion in the treatment of linear
systems of equations. However, in the case of nonlinear
inhomogeneous systems, this practice leads to major
confusion, Such confusion in regard to the system (1. 2a)
is,in the opinion of the present author,largely respon-
sible for the fact that the discovery of the new integr-
ability conditions presented in Sec, 3 was so long
delayed,

2. QUADRATIC IDENTITIES

One quadratic identity which satisfies the preceding
conjectures was found by Schouten.® This identity may
be written

V[uvaaBJ'rw = 0. (2.1)
Equation (2.1) can also be written?
Vuv[pRocB]'rw ‘an[uchB]'rw
+ vaVD/RuB]Tw - vﬂv[uRpodrw =0. (2.2)

It is clear by inspection that Eq. (2. 2) is a consequence
of Bianchi's identity (1. 2b) as the conjectures of Sec. 1
require. Equation (2.1) can be converted to quadratic
form in the following manner, First rewrite Eq.(2.1)
in the commutator form

V[uvu]RaBr °+ V[Esvu] Ry.OtT °+ v[BV;A] chur
T VeViuBeu© 4V VR ° +V Vg R, 0= 0. (2.3)

Then substitute Eq. (A17) of the Appendix into Eq. (2. 3)
and obtain after considerable simplification using the
identity (AT).

a
Bur Wt

R[upodaRoBTw + R[vpﬂloRaorw

_R[UBOC]OROMTM ﬂR[B#a] ORau‘rw =0. (2’ 4)
Furthermore the connection 1"””“ is symmetric and
therefore

Ry ® = 0. (2.5)
(See Appendix.) Substitute Eq. (2. 5) into Eq. (2. 4) and
obtain

0=0. (2.6)

Thus Eq. (2. 1) is identically satisfied by virtue of the

linear identities (A7) and (A9)., Thus the quadratic
identity (2. 4) gives no new algebraic restrictions on the
Riemann tensor. Despite this fact, Eq. (2. 1) is by no
means trivial since it constitutes an important part of
the integrability conditions for the system (1.2).

Note the general method used to obtain Eq.(2.4). First
one derives an identity by taking an appropriate algebraic
combination of the first covariant derivatives of Eq.
(A20). Second, one tries to write the identity in com-
mutator form, If the identity can be expressed in com-
mutator form, then use Eq.(A17) to rewrite the identity
in quadratic form. Finally, one checks the new quadratic
identity to see whether or not it is identically satisfied
by virtue of the previously known linear identities,

J. Math. Phys., Vol. 15, No. 3, March 1974

270

Examine Eq.(2,1). From its quadratic form, Eq. (2. 4),
it is clear that Eq.(2.1) is independent of the I' ¢, It
involves only the given functions R __7(x). Thus, Eq. (2.1)
has the following properties:

(a) It is obtained from Eqs. (1. 2b) by differentiation.

(b) The highest derivative of the I # which it contains
is not of higher order than the highest derivatives of the
I' z# which occur in Egs. (1. 2b); i.e., the highest deriva-
tive which it contains is not higher than the zeroth order,

o

These properties are by themselves enough to imply
that Eq. (2.1) is an integrability condition for the system
(1.2). They do not prove however that Eq. (2.1) is the
only integrability condition for the system (1.2). Such a
proof would require a complete Riquier analysis of (1. 2).
In Sec. 3 other identities with these same general pro-
perties will be derived. The new identities of Sec.3 will
therefore also be integrability conditions.

Another quadratic identity has been found by Walker8
in the case that the Riemann tensor is derivable from a
metric., The commutator form of Walker's identity is
=0.

V[uvl/] Raﬂc‘r + V[GVT]R (2- 7)

pyaﬁ + V[OLVB]R

O TRV
When Eq. (Al17) is used to put Eq.(2.7) in quadratic form,
one finds that Eq.(2.7) is identically satisfied by virtue
of the linear identities (A7), (A9), (A10), and (All), It is
not known at present whether Eq, (2. 7) can be though of
as an integrability condition or not.

3. NEW QUADRATIC INTEGRABILITY CONDITIONS

One quadratic integrability condition for the system
(1.2), namely Eq. (2. 1), has already been described. In
the present section, a search for other integrability con-
ditions will be made.

Motivated by the conjectures of Sec, 1, one attempts to
find all quadratic algebraic identities on the Riemann
tensor that involve exclusively the first covariant deriva-
tives of the Bianchi identity. One also keeps in mind the
fact that these integrability conditions obtained by dif-
ferentiating Eq. (1. 2b) must contain as their highest
derivatives, derivatives of the form a[pl",,mﬂ. This is
necessary since this combination of derivatives is the
only combination of the derivatives of the I, 8 which
(when evaluated at the pole of a geodesic coordinate
system) is equivalent to the Riemann tensor. (It is
assumed also that the integrability condition is generally
covariant so that the usual theorems on the differential
concomitants of a symmetric connection become relevant,
See Ref, 2, p. 164.)

One proceeds as follows. Examine Eqgs. (A20) and
(A22) and note that the linear differential operators
V[“._] and V,,..,..; both give zero when applied to the

Riemann tensor in the metric case. Furthermore, the
commutator of these two operators can be shown to
correspond to a sum of commutators of the form V[V,
and therefore leads to a quadratic identity on the Riemann
tensor. The detailed procedure begins with a considera-
tion of the equation

) =0. (3.1)

apltw

€ nTw (Vy V[“ R

Equation (3. 1) is satisfied as a result of Eq. (A20). Next,
consider the equation
€V Vi, R ogirw = 0. (3.2)

Equation (3. 2) is satisfied as a result of Eq. (A22), Sub-
tract Eq.(3.2) from Eq.(3.1) and obtain
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eV Vi, Ry gire) — €™V, Regyp, = 0. (3.3)

Equation (3.3) may also be rewritten as a sum of com-
mutators acting on the Riemann tensor, In this form,
Eq.(3.3) becomes

V[pvy]RTwcxﬂ + v[pvw]RuTuB + v[;1‘71'] Rwuaﬂ + V[Bvu] Rrwpa

+ V[Bvu.ilRwya + v[BVT] Rwupa

+ v[avv]Rmﬂp +v[ocvw]RvTBp

+ V[aerRwpr =0. (3.4)
Equation (3.3) may also be written

e e B(V,V, Rygr, — V,VyRopr) = 0. (3.5)

Relabel the appropriate dummy indices of Eq. (3. 5) and
obtain

e"”f‘“ei’ﬂ“BVUV“Ran — enB eV V R, = 0. (3.6)
Equation (3.6) may be written
ellvrol ep]paﬁvyvaan = 0. (3.7

It is clear by inspection that in the four-dimensional
case, Eq.(3.7) involves six independent equations, Sub-
stitute Eq. (A17) into Eq. (3. 4) to obtain the quadratic
identity

epuab (Rg[p'roR lolwlBa Rp[uIBl °R

)=0. (3.8)

Twloo

Equation (3. 8) is a new quadratic identity, Other new
commutator identities will now be derived. The calcula-
tion begins with Bianchi's identity in the form

VR + VR (0 +V, Ry % =0, (3.9)
Operate on Eq.(3.9) to obtain
ViV Ragyr® + Vgl 03, + Vo Ry, 9) = 0. (3.10)
This can be written

v,V |“II{M]TU - ZV[VVBROL]W" = 0. (3.11)

The second term of Eq. (3.11) is already expressible as
a sum of commutators acting on the Riemann tensor. To
put the first term in commutator form, operate on Eq.
(A20) and obtain

VHVD,Rae]T" =0 (3.12)

and then subtract Eq. (3.12) from Eq. (3. 11) to obtain

V[V(V Ileaﬂ]TG)~vpvthaB]TO_ zv[vvﬁ Rodu‘r(J =0. (3.13)

Equation (3.13) is expressible as a sum of commutators,
It can be written in the form.
v[uvp]RocBTG + v[ﬂvp] Ry 0+ V[OtVy]RESw'(j

- VBIVB] Roc,urc - v[ocvu'l Rﬂpro

— ViV RU#TO =0. (3.14)

Equation (3. 14) can be shown to be equivalent to
Schouten's identity. [Compare Eq. (2. 3) with Eq. (3. 14)
to demonstrate this.] To derive a second new identity,
operate on Eq.(3.9) and obtain

V[,,(V[“RMBT]" + VR e ® — V,aRMBT]") = 0. (3.15)
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Next consider the covariant derivative of Eq. (A21)
V.V Rigign® = 0. (3.16)
This may also be written after relabeling of indices:
— VoV Rygn® = 0. (3.17)

Subtract Eqs. (3. 16) and (3.17) from Egq. (3.15) and
obtain
Vi Vi Roig® — ViV Rigiai® + Vi VR gn°

= VVieRugn ® + VoV Riggn® = 0. (3.18)
The commutator form of Eq.(3.18) is

2V ViResn® + 2V Vg Rypg®
+ 2V V) Rope® + Vp VR, °
Ve VaRee® t VEVaR,,°
= 2VpVa Ryen® + 2V(gVy R
— ZV[TVa]R“[‘,BJ" = 0.

a
(iga

(3.19)

In each of the above new commutator identities one
can substitute Eq. (A17) and obtain an identity in quad-
ratic form. These quadratic forms of the identities will
be presented elsewhere,

Finally it should be emphasized that the system (1. 2)
may conceivably have other integrability conditions not
described here. A demonstration that the above identi-
ties are the only nonlinear identities will require a com-
plete Riquier or Cartan existence proof for the system
(1.2). It is also not claimed here that all the above
identities are independent of one another either in their
commutator form or in their quadratic form. In the
four-dimensional metric case, it has been shown pre-
viously! that ten independent linear combinations of the
Riemann tensor can be chosen arbitrarily. (These
arbitrary components are closely related to the ten com-
ponents of the Ricci tensor.) This fact places a 1imit on
the number of independent new algebraic identities of the
type discussed here.

It is also of interest to note that all the new identities
discussed here become trivial in the three-dimensional
metric case. See Ref.9.

One of the most intriguing aspects of the identities is
their nonlinear nature. Indeed, the entire calculation
disappears if the linearized form of the system (1.2) is
used. This suggests that these new identities carry in-
formation mainly about the nonlinear aspects of the
structure of Egs. (1.2). An investigation of the properties
of these identities is currently in progress,
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APPENDIX

The bracket notation is used to denote antisymmetriza-
tion. For any quantity A

waoo

A[;w]oco = (1/2!)(Apv(x0 - Aupoco)’ (A1)
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A[pua]o = (1/3!)(Apvao + Aayuc)
+ A — A — A — A

vapo v o navo

owpo)' (A2)
Vertical bars may be used to set apart indices that are
not antisymmetrized.

A[p wialo = (1/2!)(Apuo¢o - Aaupo)' (A3)
The quantity A[“mﬂ is antisymmetric in every pair of
the indices p, v, a, 7. It is a sum of 24 terms with a
positive sign in front of the terms having even permuta-
tations of the subscripts pra7 and a negative sign in
front of the terms having odd permutations of pva7. The
following identities are quite usefullo:

A[[.woc'r] = %(Ap[uzxrl - Av[potr] + Aa[‘w—r] - A-r[uyq] ) (A4)
A[u'/ot]f = %(Ap[uodr - Au[ua]r + AOL[[JV]T)’ (A5a)
or
A[puodr = %(Ap[uod‘r + Aa[pu]r + Av[ap]f)' (A5Db)

Parentheses are used to denote symmetrization. For
example,
C(}w)aT = (1/2!)(cpuar + CUpocT)' (A6)

The Riemann tensor R,,° is antisymmetric in its first
two indices

Bwa® = 0. (A7)
In the case of a symmetric connection,

P =0, (A8)
the Riemann tensor satisfies

Ripn® = 0. (A9)

If the connection is not only symmetric but also expres-
sible in terms of a metric, then one has the additional
identities

R0 =0, (A10)

Ryro =Rogy- (Al11)
Note that in general, for any vector

2V Vit = — Rap %0 (A12)
and this implies that for any vector v,

VoV =~ BiapnVs - (A13)

For a symmetric connection, one can substitute Eq.
(A9) into Eq. (A13) and obtain for any vector v,

VeV, = 0. (A14)
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Note however that if B
(A9) holds one has

rwop 1S any tensor then even when

ViVy Brjos * 0 (A15)
and also
V[;tvu Brr-u]oB = 0. (Al6)

Thus the identity (2. 1) is by no means trivial,

For any tensor B,

the commutator operator Vv,V ,
acts as follows:

woB

2v[;1vu] BTmaB = Ryz/'ro B, wop
R

- Rpuwo Boag — pyao B

R .°B

Twop ~ s Prwac*

(A17)

One also has for any tensor B, "

ZV[p Vi Bra == Rpur 9B
- R;wwo Boo — R;woco B.,." + Ruucn B’ (A18)

The Bianchi identities are usually written in the case
of a symmetric connection
VuReg: o+ VgR 0:° + VR, 0 = 0. (A19)

However, since R, ° is antisymmetric in its first two
indices, Eq.(A19) may also be written in the form

V[PRQB]T" =0. (A20)
A less familiar reformulation of Eq. (A19) is
ViuRiagn® = 0. (A21)

If the symmetric connection is derivable from a metric,
one also has
Vi

RIocBl'ro] =0. (A22)
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Two recent papers [J. Math. Phys. 13, 1825 (1972); 14, 1140 (1973)] obtained rough limits

1.68 > b, > 1.67 for the quantity b, such that an energy eigenvalue of the Yukawa Hamiltonian
[— 73y¥/2m — Ugexp(— prc/h)/r] must be zero or positive if &6 = (m/p) QUy/c i) < by,
We point out that (along with other aspects of the Yukawa equation) the quantity b, has long been

known to a much higher precision.

A few years ago Dyson and Lenard?! had occasion to
touch on the Yukawa potential Schridinger equation

[__"_fi v2
2m

which, by the change of variables

U(e-urc/r
___._Q_(e_/r__)]w :EW9 (1)

X = “76'/%’ b= (m/#)(ZUO/Cﬁ)’

a= E(Zm/p,z(,‘z), ¢(x) = xlp(x)f (2)

can be written for the spherically symmetric case
(I = 0) in the form

¢(0) = ¢(~) = 0. (3)

Dyson and Lenard were discussing the stability of a
many body system of charged particles, and it was use-
ful to them to demonstrate quickly in their Lemma I
that if & < V2, then the Yukawa Hamiltonian is non-
negative (i.e., all energy eigenvalues (E or a) = 0. In
other words, with a given m and U, there is a maximum
Yukawa particle mass ¢, (or a minimum Yukawa para-
meter b,) such that for all b satisfying

b <b, for somebd, =2, (4)
one has
E <az0, (5)

Quite recently, two papers have appeared?,3 which were
inspired by Ref. 1 and whose purpose was to show by
approximation techniques that

1.68>b,>1.64 and b, > 1.67, (6)

respectively.

In this note we wish to point out that the Yukawa
equations (1) and (3) and many details of its solution
have been studied extensively in the past. In particular
evaluations of &, as good as and orders of magnitude
more precise than Eq. (6) have existed in the literature
for many years.

To place the problem in perspective, recall that in
1935 Yukawa? proposed that the nucleon—nucleon force
is intermediated by a particle of mass u (what we now
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call the meson) which satisfies the wave equation

(O + uz)x =0. (M)

Equation (7) implies the static potential of Eq. (1), and
peopleS:6 began to investigate Eq. (1) in hopes of solving
the nucleon—nucleon interaction.

Negative, zero, and positive energies were studied
since there was interest in the deutron bound state
problem and the nucleon—nucleon scattering length and
general scattering problems, respectively. During this
period evaluations of b, of the caliber of Eq. (6) were
discussed by many authors.?"10

In 1942 Hulthénl! published a more detailed study of
the Yukawa problem (b, = 1. 680), this work being greatly
extended in 1951 by Hulthén and Laurikainen.12 [t was
observed that a solution to the Yukawa equation (3) can
be written as

800) = expl— (= V25 5 w, (1~ ). ®

Arbitrarily precise solutions can be obtained by taking
various numbers of terms in the Eq. (8) expansion and
using standard approximation techniques.

Hulthén and Laurikainenl?2 used Eq. (8) to solve Eq. (3)
as an eigenvalue problem for & (or p), given many in-
dividual energies (including zero total energy). For a
given energy (quantity a) they found the three lowest &
eigenvalues and the wavefunctions to high precision.
They also obtained asymptotic expansion formulas. In
particular, for E = 0, Hulthén and Laurikainen's itera-
tions (2 = 1, 2, 3) for the lowest eigenvalue b (i.e., b,)
were

bo(1) = 1.679 933,  by(2) = 1.679 853,

9
bo(3) = 1.679 8195. ®)

This exhibits the precision we described.

It is worthwhile to note that Hulthén!?! also devised
the potential function

F =¢e /(1 —e*). (10)

This is useful since it admits of an exact solution and
goes over to the Yukawa potential for small x. One can
consult the literature for properties of this
potential.117 14 Also, Ref. 15 gives a review of the
subject of Yukawa and Hulthén potential theory.
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Finally, we mention that other aspects of the Yukawa
potential have been studied. Examples are its use in
massive-photon electrodynamics16é and its connection to
Cauchy—-Riemann and Hilbert transform theory in the
two-dimensional case, 17718
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The asymptotic behavior for ¢ — 4 o of S(¢) = exp(— i Ht)Sexp(4 i Ht) and its time average
S ()= t""§idu S(u)is discussed. Here is S an element of the Banach space ®,, constituted by
the trace class of operators on the (separable or nonseparable) Hilbert space JC, and H is the
Hamiltonian, i.e., a bounded or unbounded self-adjoint operator on JC. Necessary and sufficient
conditions are given for the existence of the limits S (+ «) and S(+ o) with respect to the weak
topology on ®,, for the latter under the assumption that the continuous spectrum of H is absolutely
continuous. In addition it is shown that if, for a normal state (density operator) p, (¢) has a weak
limit, then the limit is again a normal state. This provides further insight in the nature of Emch’s
“first ergodic paradox” [G. G. Emch, J. Math. Phys. 7, 1413 (1966)].

I. INTRODUCTION

In the present paper we are concerned with the asymp-
totic temporal behavior of density operators (normal
states) p({) = exp[— iHt]p(0) exp[+ iHt], H being the
Hamiltonian of the system under consideration.

In order to set the stage for the further discussion let
us introduce some notation. Let JCbe a (separable or
nonseparable) Hilbert space with elements x,%,... and
inner product (x,v) linear in x and antilinear iny. We
denote by & = ®(3C) the C*— algebra of all bounded
operators on Jand by |A| the operator bound of A € &,
e, = (Bw(J(:) isthe minimal norm ideal of all completely
continuous operators on J¢, whereas &, = ®,(3) and &,
= §,(3) denote the trace class and the Schmidt class of
operators, respectively. The trace norm of S € &, is
denoted by |S|,, whereas for S, T € &, we have the inner
product (S, T), = tr{ST*} and norm |S], = (S, $)}/2.
®,,®,,and B  are familiar examples of minimal norm
ideals I, of completely continuous operators on ¥t As
is well known any such minimal norm ideal / , equipped
with the a -norm topology is a Banach space and the set
F of all operators of finite rank is ¢ -norm dense in /.
Another important result is that the dual &% of &_ is
isometrically isomorphic to the trace class ®,, the dual
of which, in its turn, is isometrically isomorphic to G.
For this reason the notation 8 , = &,, and &, = &, is
sometimes used.

A bounded linear functional (blf) on ®; has the repre-
sentation ¢(S) = tr{SA},S € ®, with a fixed A € ®
whereas a blf on & can be written in a unique way as
Y(A) = tr{SA} + Y (A), where A € ®, S is a fixed element
of ®; and ¢ *(A) vanishes identically for each A ¢ @
We shall say that a blf  on ® is normal in case ¥+ = 0.
The normal states are the density operators, namely
they are those elements p of &, which are positive (i.e,
p = 0) and have unit trace (i.e, trp = 1).

The Hamiltonian H is a self-adjoint operator on X,
i.e., H = H*, so that, according to Stone's theorem, U(t)
= exp(— iHt),t € & is a one-parameter, strongly con-
tinuous group of unitary operators on ¥X. The equation
of mation for the density operator is then given by p(?)
= U(t)pU*(t) = U(t)p, p being the density operator of the
system at / = 0. In the sequel we investigate the asymp-

totic behaviour for large |¢| of S() and S{t) = ¢ -1 fob ds
S(s) [a precise definition of S(f) is given in Sec. 3] for
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general S € ®&; and with respect to various topologies.
The emphasis, however, will be on the weak topology, i.e.,
on the asymptotic behaviour of tr{S()A} and tr{S{)A}
with A € G,

In recent years work along similar lines has been
done by Emch2 and by Moyal.3 In fact, Emch has pointed
out that nonnormal states may result as ergodic limits
of normal ones. We show that this cannot be the case
if trS(#)A has a limit for every A € &. Moreprecisely, if
S is a normal blf on ® and S(f) has a weak limit [i.e.,
S(t) converges weakly towards some blf ¢ € ®*] for ¢
tending to + ® or — oo, respectively (in short ¢ —+ ),
then ¢ is again normal. A basic distinction between our
work and Ref. 2 is that we consider a general self-
adjoint Hamiltonian H, whereas Emch considers only
bounded Hamiltonians. This makes it necessary to
modify a number of definitions and proofs adopted from
the case when H is bounded. For instance, the infinitesi-
mal generator — iH of U(f), defined above, does no longer
have the simple representation as the inner derivation
—{H = — i{[H,"]. The case of a general self-adjoint
Hamiltonian H has been considered by Moyal,?3 but
unfortunately there are some errors in his work. We
correct these errors in Sec. II where we derive some
properties of the point spectrum of the generator H.

In Sec. III we prove the normality of weak ergodic
limits, referred to above, whereas in Sec. IV we deter-
mine those S € &, with trS = 0, for which S(f) possesses
an ergodic limit with respect to the norm topology on
®,. Denoting by E, the projector upon the subspace of
¥ spanned by the eigenvectors of Hand by E, =I—E,
its complement in 3¢, we find that a sufficient condition
for the existence of lim,_, = S(¢), with respect to either
the weak or strong topology on ®,, is that F . SE_ = 0.
For S with S = 0 or S < 0 this condition is both neces-
sary and sufficient.

In case H has a pure point spectrum it is well known
that S(f) does not have a weak or strong limit for { —
+ o, unless S is invariant, i.e., S(f) = S for each f € &.
However, if the continuous spectrum of H is absolutely
continuous, then the weak limit of E, S(/)E, and E cS(t)Ep
is zero. In that case sufficient conditions for the exis-
tence of the weak limit of S(¢) for f >+ © are E,SE, =0
and EPSEP invariant. For S with S < 0 or S = 0 these
conditions are both necessary and sufficient.
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Il. PROPERTIES OF THE POINT SPECTRUM OF H

In order to discuss some of the spectral properties
of the infinitesimal generator — ¢H of U(?), it is con-
venient to make use of the concept of transformer.476
Transformers are (linear) transformations which map
operators into operators (the name superoperator is
also often used, whereas within the present context H is
often referred to as the Liouville operator).

Let us consider the three families of mappings of
S e [ into

U,()S = U()S, U, (t)S = SU(H), UH)S = UN)SU(—¢), (1)

respectively, as groups of transformers on a given
minimal norm ideal 7, of ®(3). The general theory of
semigroups of transformers of the above type has been
considered recently by the present authors (cf. Ref. 6).
In the sequel we will only mention a few results per-
taining to the problem at hand. Thus it can be shown
that the three transformer groups defined in (1) are
continuous in the norm (i.e., strong) topology of the
Banach space / . Denoting their infinitesimal genera-
tors by — /H;,,— iH, and — ¢H, respectively, we have H,S
= (HS)** for S € :DHZ and H,S = (SH)** for S e :Dﬂr (here

D, denotes the domain of A).
In addition, for S € :DHI Ny €Dy
r

HS = (HS — SH)**.

Although (HS)** = HS, since H, being self-adjoint, is
closed and densely defined, whereas S is bounded, such a
reduction is not possible for (SH)**, unless H is bounded.
Thus an expression for H given by Moyal [Ref, 3, Eq. (5);
Moyal uses D instead of H] is, in general, correct only
for bounded H.

Our notation for the canonical representation of a
completely continuous operator S will be S = 27,2, (", u,)
v, where Ay > X, >*"> 0 and {,} and {{vk} are two
countable orthonormal systems in 3. {(*, x)y is defined
according to [(*,x)y )}z = (z,x)y,z € .} Since eacha,
occurs only finitely many times we can also write

n
k
S=2x 2 (",u, v, ,wherenowa; >x, > >0
& ]'kzl k k

and n, is finite. Using the latter notation we have SS* =
2, wiP, and S*S =7, w, Q,, where w, =A% while

iy %k
P, = 2, (v, v, tandl@Q, = 25 (,u, Ju
k jk=1 * i ip k jk=l ’ i’y

are two families of mutually orthogonal projectors, the
ranks of P, and @, being given by the finite number #,.
In addition we have

©0 o0
20 P,=I—Pgand 2 Q, =1—Q,,
k=1 k=1
where P, and @, are the projectors upon the null-
spaces of SS* and S*S, respectively. In case X is non-
separable the latter null-spaces are necessarily in-
finite dimensional, nonseparable subspaces of JC.

In the sequel use will be made of the following theorem:
Theorem 1: Suppose S &€ Dy © I is an eigenvector

of the transformer H acting in a minimal norm ideal I
of completely continuous operators, i.e., HS = ;5,8 = 0.
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Then p equals the difference of two eigenvectors of #
and S has the form S = 25, 1,(*,y )x,, where {x,} and

} are two orthonormal systems of eigenvectors of H,
such that the difference of the eigenvalues, correspond-
ing to x, andy, in each term (,v,)x, equals p. Con-
versely, if S has this structure, then it is an eigen-
vector of H.

Remark: The above theorem has been stated by
Moyal? for the special case when /, is either ®; or ®B,.
Moyal's proof, however, contains a few errors. As men-
tioned before his expression for H is incorrect. Also
it is not a priori evident that S =2, 2, (-, u,)v, € Dy
implies that u,, v, € Dyfor k =1,2,3,....

Proof: We \zlrite S in the form
k
so that (see above)
SS* :z‘kj w,P, and $*S =§ W, Qe
Since HS = i S we have for S({) = U(#)S;
2,5(t) = 3,U(1)S = — iHU()S
=— JUQ)HS = — pU(DS = — iuS().
and hence (see Ref. 7, pp. 68, 69) S(¢) = exp[iu?]s, i.e.,
U@#)S = exp[— iu?]S. It follows that
U()S* = (U(1)S)* = exp|+ iut]15* and U(/)(SS*) = SS*,

whereas
U(2)(S*S) = S*S., Thus restricting our attention to SS*;

exp[— iHt] D w, P, exp[+ iHt] =2, w,P,.
k k

Hence, multiplying this relation from the left with P,
and from the right with exp[— ¢H¢]P,, , admitting the
values I = 0 andm = 0, w, being zero, we obtain;

(wl - wm)Pl exp[— th]Pm =0.
Since w, # w,, unless I = m and
o0
Z Pk = 19
k=0
it follows that
P, k=0,1,2,3,...,reduces exp[— iHt].

Let x € D,. Then, since (— it)" 1 {exp[— iHt] — l}ka
= P,(— it)"Hexp[— /Ht] — 1}x and the right-hand side
converges strongly towards P,Hx, it follows that P, x
€ Dy and P, Hx = HP,x, For k =1,2,..., (only non-
zero k's are considered in the remaining part of the
proof) P, is a projector of finite rank n, and, as H is
closed and densely defined, it follows that #P, is closed
and everywhere defined, and consequently must be bound-
éd. In particular P, HP, is a bounded self-adjoint opera-
tor of finite rank n,. In addition exp[— iH!|P, = exp
[— z'PkHPkt]Pk. In the same way we obtain the corres-
ponding results for @,. Next we turn to the equation

U(1)S = exp[— iHt]S exp[+ iHt] = exp[— iut]s.

Multiplication from the left with P, and from the right
with @, leads to

exp[— iP, HP,tP,5Q, exp[+ iQ,HQ,t] = exp[— iut]P,5Q,,

n
s & .
where, obviously, P,SQ, =2, Z}]k=1 ( ,u]k)v]k.
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Let {x, }/ k_, and {y - }Z,,’; -, denote the n, orthonor-
mal eigenvectors of P, HP, in P, ¥ and of @ ,HQ, in
@, X, respectively (they may be nonunique, but what
matters here is that they span P,3and @, 3, respective-
ly). Then, dropping the subindex % for the moment,

2w, = DD €9
J i i om
with
Crom :E (UJ’ xm)(yl) uj),
7

and we have, denoting the eigenvalue of H, corresponding
to x,, by €,, and the one corresponding to y, by €,:

ZE exp[— Z(em - el)t]clm (.;yl)xm
' = exp{— {ut] zE € (s Y% e

Hence c¢,,, = O unless €,, — €, = . Since S # 0 there
is at least one c,,, in the expansion of some P,5Q,, %k =
1,2, 3,.. which is nonvanishing and hence p equals the
difference of two eigenvalues of H. Consider now

IE Clm(.’yl)xm = (y; c_lmyl)xm

for some fixed 7. Since any y, must be an eigenvector
of H at the eigenvalue €,, — p, this must be true for

Wy, :Z 6lmyl :E (xm9 vj)uj
[ i

[note that (w,,w,) =6,,,]. Thus we have
"k
P,SQ, =X, 2 ('vwmk)xmk’
mk=1

where x,, and w,, are eigenvectors of H, the differ-
ence of the corresponding eigenvalues being u. Since
{w ’"k} spans Q,Jand {xmk} spans P, 3 and {P,} and
1@, are two sets of mutually orthogonal projectors, the
expression for S, as announced in the theorem, follows.

The converse statement is obvious.

It is already implicit in theorem 1 that in case H has
empty point spectrum, there is no nonvanishing Se 7,
such that HS = 0. Defining the commutant {H}’ of H as
the set of elements of B(J) which commute with all
projections E, of the resolution of the identity of &, we
in fact have the following result (¢ denotes the empty
set);

Lemma 1: Suppose H has empty point spectrum.
Then B _ N {H}' = ¢.

Proof: Assume to the contrary that some nonzero
S € G commutes with all E, from the resolution of the
identity of H;i.e.,SE, = E,S. Then it follows that S*E
= E_S* and hence SS*¥E, = E, SS*.

Using the notation introduced before we have SS* =
20 WPy, wy > wy >+ -+ > 0, where the P,'s are mutu-
ally orthogonal, and we obtain from the relation
P,SS*E, P, = P, E SS*P, the equation (v, — w,)P,E P,
=0, k,1=1,2,---. As P;SS* =S85*P, = 0 this rela-
tion remains true if % or ! assumes the value zero
{wg =0).

Since
o0
2% P, =1,
k=0

it follows that each P, reduces each E, from the reso-
lution of the identity of H. Hence P, reduces H,i.e.,
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P,H =HP, = P,HP,. Since for k > 0 each P, has
finite rank and since the index % assumes at least one
value, it follows that H has at least one eigenvector and
we have a contradiction.

We say that S € I is invariant in case U(¢)S = S for
all £ € ®. Thus obviously, an invariant S € [ is an
eigenvector of H with the eigenvalue zero. If H has
empty point spectrum we conclude from Theorem 1
that there exists no invariant Se 7,

1ll. THE NATURE OF ERGODIC LIMITS ON THE
TRACE CLASS G (1¢)

__In this section we investigate the limits of S(¢) and
S(#) in the weak* and weak topology on ®, respectively,
as ! tends to £+ 0. We recall that the weak* topology on
®, is generated by the bounded linear functionals of
the type ¢(S) = trSA, where S € ®,, and A belongs to
the predual & _ = &,, of &;. A neighborhood base at
S, € ®, for this topology is given by all sets of the
form

{Sea lltr(S~5)4,1< €,j=1,..k}

where A,,..,4, € ®_. Similarly the weak topology on
®, is generated by the set of all blf on ®,; and a neigh-
borhood base at S, in this topology is given by sets of
the above form except that now 4,,...,A4, € ®, Thus
we shall be concerned with the asymptotic behavior for
large |¢] of the expression ¢(¢,S,A4) = tr[U(H)A =
tr{S()A} in which S is contained in ®; and A belongs to
either ®_  or to &.

Suppose that for ¢ tending to + « the functional ¢(¢, S, A)
has a limit for certain S and A. Then, since ¢(¢, S, A) is
continuous in ¢,

3,5,4) =t [ ds (s, S, A)

exists and tends to the same limit for =+ ® as ¢(t, S, 4).
However, since H generates a strongly continuous (semi-)

group on @, S(¢) = 1 f; ds exp[— iHs]S exists in @, as
a Riemann—Stieltjes integral with respect to the norm
topology of &, (Ref. 7, p. 63, Theorem 3. 3.2) and in fact
we have ¢ff, S, A) = trfS(t)A},A € ®. Thus ¢ can be
interpreted as a blf on & and as such it is normal. Ob-
viously, ¢ is linear in S as well and since

— -t
lo(t,s,A) < -1 [, dsltr[U(t)S]Al< 11
.4 t
x [y dslU@S| Al =1 ) ds|S|  |A] =15],14],

it follows that ¢(S) is a blf on B, and has the represen-
tation ¢(¢, S, A) = tr{SA(— )}, A(— ) € ®. In fact, since

¢(t,S,A) =1 fot ds tr{exp[— iHs]S exp[+ iHs)A}
=¢1 fbt ds tr{S expl+ iHs]A exp[— iHs]}
=11 fot ds tr{SU(— s)A},
we can write
A@) =1 [, dsU(s)A for A < @,

where the integral is now defined with respect to the
weak* topology on ®.

Theovem 2: Let S € ®, and let {E, |« € K} be the
set of mutually orthogonal eigenprojectors of H. Then
P,S =2, ESE, exists as an element of &, and
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w* — tl—gnco S(¢t) = PyS
i.e.,for any A € ®&_ we have tl_gnoo trS(H)A = tr(PyS)A.

Remark: The above results were obtained earlier
by Emch? (see also Ref. 8) for separable J. Since we
do not make this restrictive assumption and also since
part of Emch's proof seems to have remained unpub-
lished we give a complete proof.

Proof: (a) We show first that P;S € B; when S €
®,. For separable Jthis follows at once from Ref. 4
p. 105, theorem III 8. 7 (only separable Hilbert spaces
are considered in Ref. 4). Hence we reduce the problem
at hand to a separable subspace of 3Cin case ICis non-
separable. Since S € B,,S is also contained in &, and
we have for a finite number of mutually orthogonal
eigenprojectors of H:

n n
2, |E,SI3=1 2 E, SI3 < |E,s|3,
k=1 k=1
where E is the projector upon the subspace E, % = 1,

of ¥ spanned by eigenvectors of H. From the above
relation it follows that |E, S|, can be nonzero only at
most for a countably infinite subset K, =K,(S) C K of
indices. Since |E, S|, = 0 implies E,S =0 it follows
that E,S =0 unless ke K,(S). In the same way we
conclude that SE, is nonzero only for an at most count-
ably infinite subset K, (S) of K. Thus P oS, if it exists, is
of the form
P,S= 2, E,SE,,
kE K,
where K, = K; N K,. E, may still project upon a non-
separable subspace of 3. I this is the case we can
consider a basis for E,J and associate an eigenprojec-
tor of H with each basis vector. Repeating the argu-
ment presented above we then conclude that there is an
E;, C E, such that E,S = E,S, where E} projects upon
a separable subspace of 3¢, Thus we may assume in
the following that in the expression for P,S the E,'s are
projectors upon separable subspaces of 3. Thus
we may assume in the following that in the expression
for P,S the E's are projectors upon separable sub-
spaces of 3. Thus

E,= 2, E,andE, = 2 E,,
kEK, ke K,

being sums of a countable family of mutually orthogonal
projectors, are well-defined projectors upon separable
subspaces of 3. In fact we have E,S = E ;S and SE,
SE,, so that E,SE, = E,SE,. In order to show thls,
suppose there is an x € ¥, x = 0 such that Epr =0
and E,Sx ¢ E J. Then there exists ay € E,5¢—E,&
such ﬁlat (E Sx ,¥) # 0. This means that there is at
least one « C K — K, with (E,Sx,y) = 0. Hence E, S = 0
and we have a contradiction. We conclude that E pS =
E,S and, in a similar way, that SE , = SE,. Writing

S ZZAZ (',ul)vl
¢
and defining
P =; (-, v,

and

Q= ZZVJ‘ ("ul)ul

{(which both project upon separable subspaces of i) we
see that both S and E,SE, are contained in &, (), where
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M =PI U QI UE U E,X is a separable subspace of
JC. Thus the theorem referred to above can be applied
In particular P,S € ®,(3) and |PS|, <[S];.

(b) It remains to show that
_ ¢
,lim trS(OA = lim 1 [, ds trS()A

ex1sts and is equal to tr(POS)A for S ®, and each A €
. As Emch?2 pointed out this can be done conveniently
by us1ng von Neumann's mean ergodic theorem on the
Hilbert space G,. His argument runs as follows; Since
¥ is dense in 03 there existsfor 07 S €®,,A €®_ and
€>0anFe § such that |[A — F| < €/(2|S| 1) Hence

[tr(S(t) — P S)A|
<|tr(S¢t) — PS)F| + [tr(S(t) — PeSHA — F)l
< [tr(S(t) — PS)F| + (IS)], +1PySI)A — F
< |tr(Sk) — PyS)F) + €.

Now, as S() and F are both contained in ®,, we have

te{S¢)F} =11 fo ds (U(s)S, F*),. Since U(¢) is a con-
tinuous group of unitary operators on the Hilbert space
®,, it follows that H is self-adjoint on &, and von
Neumann's mean ergodic theorem then yields

lim (S(t), F*), = (PS, F*),,
t—>too

where P is the eigenprojector of H at the eigenvalue

zero. It is then seen from the general expression
ET = [E, TdE,Tc®yH= [kdE,

for the members of the resolution of the identity for H

[see Ref. 9, Eq. (A33); the results stated in Theorem A.2

of this reference are true even for nonseparable &),
that

P = lim (E, —E,)

gin the strong topology of &,) equals P and the theorem
is proven.

According to the above theorem 2 ¢(¢.S,A) converges
for ¢ tending to + o towards tr{P,S)A for eachA e®, .
Suppose now that ¢(f,S,A) converges for ¢ tending to
+ o for each A € @&, i.e., that the limits

-lp_x(‘q) = tlim $(t,S,A)
> +o0
exist for each A € ®. Obviously ¢ ,(A) are blf on ®,

the boundedness being evident from the inequality
lo(t,S,A)] < . We show that ¥/, (A) are normal.

Theovem 3: Suppose S(¢) [or S{t)] converges weakly
towards the blf ¢, € &* (or ¢, € ®* respectively) for
t =+ o, Theny, (or y,) is normal and has the unique
representation ¢, = PS (or ¢, = P,S respectively).

Proof: Since the weak convergence of S{¢) implies
the weak convergence of S(¢), the limit being the same,
we can restrict our attention to S(t).

We write S, = S(n) forn =1,2,3,.... Since S(¢)
converges weakly towards y, for t tendmg to infinity,
it follows that {S ., 18 a weak Cauchy sequence in &,
i.e., for given ¢ > 0 and A € @ there exists anngy =#,
(e, A) with [tr(S, —S,))A| < € for n,m > n,. Since B,
as the predual of the W"‘ algebra (B(:fc), is weakly sequen-
tially complete,10 it follows that {S } has a weak limit
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S. in ;. From_ the inequality |tr(S(t) — S))A| < |tr(S()
~S@NA| +|tr(S, —S,)A| it then follows that S(¢) con-
verges weakly towards S, for / tending to infinity, since,
by taking ¢ and n sufficiently large, both terms on the

right can be made arbitrarily small.

Since S(¢) converges towards P,S in the weak* topo-
logy on &, and the weak topology is finer than the weak*
topology, it follows that necessarily S, = P,S. The re-
sult for / tending to —w follows in the same way.

In general ¥, (4) will not exist for every A € ®. Let
us therefore introduce the subsets D, C ®, consisting of
those A € ® for which ¢/, (A) exists. It is a routine
matter to show that D, are closed in the uniform topo-
logy on ®. Since 8 C D, and B’ = & it follows'? that
the weak* -closure of D, is ® itself.

Let A have empty point spectrum and let S =p be a
density operator. Then D, do not coincide with ®. This
follows from Theorem 3 by remarking that if D, = ®
then y,(A) = 0 for every A € B. On the other hand,
¢, () =trp =1 and we have a contradiction. Emch?2 has
pointed out that in this case ¢/, is no longer normal on
D, (although p does represent a normal state on ®). For
separable JC this is directly evident from the inequality

0 :§$t(Pk)¢ —lpx(?Pk) :51(1) =1

for any set of mutually orthogonal one-dimensional
projectors {P,}_; C ®_ with the property

o0
21 P, =1L
k=1

Thus ¢, lacks the complete additivity property and
hence cannot be normal on D,. In particular y, is not
normal on the C*-algebra C ={ol + Ala € ®,Ac G}
C D,. On the other hand ¢, is normal on any von Neu-
mann algebra % C D, for arbitrary S € ®,. (A proof
of this statement follows along the lines of the proof of
Theorem 3.) As a nontrivial example consider the situ-
ation that # has empty point spectrum and that this is
also the case for H;, a second self-adjoint operator on
3C. Suppose further that the wave operators

Q, =s-lim exp[iHt] exp[— iH ]
—Xoo
exist on ¥ as unitary operators, so that
§-lim expliH yt] exp[— iHt] = Q*
—~>+c0

exist on 3 as well (cf. the case of a simple scattering
system with no bound states). Then it can be shown that
stlliig)x exp[iHy] exp[— iHt]S = Q*SQ, =S,
for any S € ®,. Consequently,y, (A{) =y, (A) = trS, A for
any A in the von Neumann algebra {H,}’ {since A =
expfiHyf] A for such A}. The idea of considering the von
Neumann algebra of observables that commute with the
“free Hamiltonian” H, has recently been applied to the

theory of scattering from long-range potentials!2 (see
also Refs. 13 and 14).

Next we consider the question whether for H with empty

point spectrum S(¢) can have a weak limit for a general

S € ®;. Since, if this limit exists,S*(¢) also has a weak
limit we restrict ourselves to Hermitian S, As the limit
must be zero in the present case we can disprove its
existence by exhibiting an A € ® for which either y,(4)
does not exist or has a nonzero value. Since ¢/, (4) =

trSA for A € {H}’ the above limit does indeed not exist
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if trSA = 0 for one such A, in particular if trS = 0.
Unfortunately this criterion is not sufficient to rule out
the existence of the above limit for every S &,. As a
counter example consider S = (-, x)x — (*,y)y where x
and y are orthonormal. Denoting by {E )\} the resolution
of the identity for H we note that W, =1 — 2E, is unitary
for every A € ® and that f(r) = (W ,x, x) is a continuous
function of A which assumes both positive and negative
values as A runs through ®. Thus there is a 2, with
f(y) =0. But theny = W, x is orthogonal to x and we
have for this particular vallie of y,trSA = (Ax,x) —
(W*;\OAWAOx,x) =0 for every A € {H}'.

IV. THE EXISTENCE OF ERGODIC LIMITS IN ®&,(5)

In Sec. Il we showed that weak ergodic limits of ele-
ments of &, are again contained in ®;. Next we deter-
mine those S € ®&; for which S(¢) and S(¢) do have a weak
ergodic limit in &,. In fact we find that the set of S € B,
for which S{¢) has a weak ergodic limit for £ -+ © co~
incides with the set for which S(t) possesses a strong
limit in G,.

It turns out to be convenient for the further discussion
to separate H into its discrete and continuous part, i.e.,
H=H, +H,,where H, = E HE and H, = E_HE . Here
is E » fhe projector upon the subspace of 3¢ spanned by
the eigenvectors of H and E, =1 — E, is its complement
in 3. Thus H, has a pure point Specfbrum and H_ a pure
continuous spectrum on the respective subspaces X, =
E, % and 3¢, = E_3C of 3t. LetS € ®&;. Then we may
writeS =S, +S§,, +S5,, +S;.,whereS,;; = ESE i,
€ {p, c}. Furthermore, if we write S, =u@)s,, then
obviously S; (t) = exp[— ¢Ht |E SE, exp[+ iHt] =
exp[— iH;t]S,;, exp[+ iH;t]. In the sequel

s, — lim §i].(t)

t2>t 00

denotes the limit for / =+ w of S, (¢) in the strong (i.e.,
norm) topology of 3, and similarly

wy— tl_)irtnoo Si](t)

stands for the same limit with respect to the weak
topology on @, .

Lemma 2: sy —lim,_, §;,p(t) exists and is equal
to BgS,, = PS.

Proof: Let us denote [see part (a) of the proof of
Theorem 2] {E , |k € K,(S)} by {F,}?_, and similarly
{E, ke Ky(8)} by {G,}2,. Then

oo Q0
E;= 2, F,andE, = 2, G,.
k=1 k=1

By application of Lemma 4.1 in Ref. 6 it follows from
the fact that

b
F
P

converges towards E, and
p\
¥ G,
k=1
towards E, in the strong operator topology on 3 when
b tends to infinity, that for given € > 0 there exists an
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ny =n,(€) such that IS, —S, 1, = |E;SE, —5,|; <e
forn > n;. Here S, is'defined as

Also for;ngiven € > 0 there is an m ; = m 4(¢), such that
20
inS,, = Z} Aj(',uj)v]. + Z} )\j(',u].)z;]. =S,
00 j=1 j=m+l
+ 27

j=m+1
norm smaller than € for m > m . Furthermore, if

)tj(',uj)v]- the second part on the right has trace

n
2 FpS7.6,

n
Sm=73;
k=1 =1

then there exists for given € > 0 an n, =n,(¢) such that
| Sm, — Sm| < € for n > n, for the same reasons as dis-
cussed above in connection with S, , and S,.

Let us now take, for such an € > 0, a fixed m > m (¢)
and n > max{n, (¢), n,(¢)}. Then
l§“,(t):1>os”l1 ~ _
+ | 8m(t) — PoSmly + | Po(Sz— S7)|4
+ | Po(S7, — Spp)la
Spyly + 1S3, — Siply + 1S7() — PoSzly
+18m—sp,lit 18y, —

<18,,—

We write

n n
Sp=22 20 20 5Ty
k=1 7=1 j=1
with

Ty = Fk(':"j)Usz = (*, Gu,)Fp,
so that (0 < A < 1),
. n n m _
IS,',”(t)— POS,',"ll <5 XX ITjkl(t)— POTjklll'
k=1 1=1 j=1

Denoting the eigenvalue of H » corresponding to F, by
5, and the one corresponding to G, by ¢,, we have
0 0, # €
PoTjp = ’ * v
T juss 0, = €.
Also

Typlt) =1 [ *ds exp[— iHs {{F,(*, u;)v,G,} exp[+ iHs]

¢
=¢1 fo ds exp[— iéks]{Fk(',uj)ijl} exp[+ i¢;s]

so that
exp[— i(6,— €))t] — 1
_ [ . k ! ] e 5k;é €;
T4 (t) = — i(6,— €t
T 6,=¢,;
Thus
| T jp () — PoT 4y =0 for 6, = ¢,
and
— exp[— (6, — €,)t] — 1
[ T i (8) — PoTy 1y i — et I Tl
exp[— i(8, — €,)t] — 1
< Xp[— (0, )] for 5, = ¢,.
—i(bk_ fl)t
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If follows that T, (f) converges strongly towards P T,
on ®, for anyj € {1,...,m}and k,l € {1,...,n} and
hence, since m and z are fixed, we conclude that

$1-1imS, ,(t) = PyS,,.
£+ 00
Lemma 3: s,-1imS, (t) = s; — limS, () = 0.
=00 >t 00
Proof: The first part of the proof goes along the
same lines as in the proof of Lemma 2. Thus there

exist for given ¢ > 0 a fixed » and m such that

| Spc — S;{ll1 < €, where 5™ is now given by

n
Sm = (Z}  STE..
k=1,

Here S7' is defined in the same way as S7, in the proof
of Lemma 2. Hence:

15,0 <18,.¢)—Sr®), + 1Sp®)l; < e + | SP@®);-

Next we write

n m n m
Sp=2 20 FCou)vEo =725 25 NTyy,
k=1 j=1 1 j=1

[
n

and we have

1-

n m
ISm)ly < 2 25 [ Ty()
k=1 j=1
Since

Tyt) =11 fotds exp[— iHs]Fy(*,u;)v;E, exp[+ iHs]
=¢-1 fo “ds exp[— 6,5 1F,(*, u;)v,E, exp[iH ;s]
=t-1 fotds(', exp[— i(H, — 6,)s]E u,)Fp;
= (11 fotds exp[— i(H, — 8,)s]E ;) Fy,,

we obtain

| Tyl =121 fotds exp[— i (H, — 6,)s1Bu, || Fy .

Next we apply von Neumann's mean ergodic theorem to
the expression in the first factor on the right. Since
only quantities pertaining to 3¢, occur and H_ — §, has
empty point spectrum on this subspace, it follows that
the first factor on the right tends to zero for ¢ tending
to £ . This being true for each % € {1,...,n} and

j €{1,...,m} we conclude that

$,-1imS, ,(¢) = 0.
100

In the same way the result for §c p(t) is obtained.

Theovem 4: Let S € ®, with trS_, = 0. Then 5(¢)
does not have a strong limit in B, for { -+ o, If
S.. = 0 then

s,-lmS(t) = PS.

{100

Proof: Since according to what has been proven in
Lemma's 2 and 3,5, (t),S,,(f),and S () have strong
limits for ¢ - o, itb %o_llows that S(¢) has a strong limit
if and only if S, () =S(t) — S, () — Spc(t) — Scp(t) has
a strong limit for £ — + .

t
Now tr{S, (HA} =¢-1 fo ds triexp[— iH s)S,,
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exp[+ iH _s]E AE,} so that only quantities pertaining to
3, occur. On this subspace H  has empty point spectrum
and according to Theorem 3 (cf.the remarks at the end
of Sec.Ill) S, .(¢) does not have a weak limit on ®, for

t >+ o0 if trS, . = 0. This, in turn implies that Scc(t)
does not have a strong limit if trS__ = 0 and hence the
same holds true for S(z).

Corollary 1: Let p be a normal state. Then

s,-limp(t)
>+ 00
exists if and only if p =p,,. Inthat case

s1-limp(t) = Pyo.
>4 00

Proof: Suppose p(t) has a strong limit. Then,
necessarily p . = 0. Thus, writing

o0
p=2 A (0, upduy,
k=1

we obtain

Xy Z2g2..20,

< o0
trp,, =tr kE_l (05 Eu)E uy b = ;?1 A0 Eu,l2 =0,

so that £ u, =0,k =1,2,3,---. Hence p =p,, The
converse statement is contained in Lemma 2,

As a second corollary we recover Theorem 5 of Ref.
3. Let S € B, be invariant. Then, since S = S(t), we
have § = P.S,i.e.,8 = S ,,- Hence, for A € ®, we have
AS = (AS),, + (AS) ., 80 that AS(t) = A(t)S converges
strongly towards P_{AS) = (P,A)S in ®, [here A(t) and
P,A are defined with respect to the weak* topology
on B]. Thus:

Covollary 2: Let S € ®, be invariant and let
A € ®. Then

§,-limAS(f) = s,-limA()S
t>xc0 trio0
and . -
s1~1imSA() = s,-1imSA(?)
> 00 > 00
exist and are equal to P(AS) = (P,A)S and P, (SA) =
S(P,A), respectively.
So far we have only consideredthe asymptotic behavior

for large times of S(¢), the time average of S(f). Since
the existence of

w-1imS(¢)
{100
implies the existence of

w,-1imS(t)
t>ico

it follows that S(¢) does not have a weak limit if
trs, .= 0.

Next we consider S » p(t). We have for A e ®
tr{S, (A} = triexp[— iH 115, , exp[+ iH t]E AE }.

Since only quantities pertaining to ZCP occur in this
expression, it follows that the situation is equivalent
to the one where the Hamiltonian has a pure point
spectrum. As is well known there is no weak ergodic
limit in that situation, unless S is invariant. This is
easily verified by observing that if
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w,-1imS(¢)
t>100

exists, it must be equal to P,S. By taking A = (:,ul,
where u# and v are eigenvectors of H with corresponding
eigenvalues 6 and ¢, respectively, we obtain tr{S()A} =
exp[— (6 — €)t] (Sv, u), whereas, on the other hand,
tr(P,S)A = 0 unless 6 = e. In the latter case tr(P;S)A =
(Sv,u). It follows that S is not allowed to possess non-
vanishing matrix elements between eigenvectors of H
at different eigenvalues, i.e., S must be invariant, Thus
we conclude that a second necessary condition for the
existence of

w~1imS(¢)
t—>100
is that S pp is invariant. Since for a normal state p we
have Ppe =Pep= 0 the following result holds:
Theovem 5: Let p be a normal state. Then
wy-limp(t)
t—>i 0
exists if and only if p is invariant.

It remains to consider S, (f) and S ,(¢) for arbitrary
§ € ;. In general not much can be said concerning
their ergodic behavior. However, in case H , when
restricted to 3, has absolutely continuous spectrum
only, then the following lemma holds:

Lemma 4: Let H , restricted to 3¢, have absolutely
continuous spectrum only. Then

wl-limSPc(t) = wl—limScp(t) =0.
100 t—1 00
Proof: In the same way as in the proof of Lemma 3
we obtain for A € ®;
n m
| trS, (DAl < e |A] + kz)l Z)ll trTy; (DA,
=1j=
where
Tkj(t) = exp[~— iHtF,(", ”j)UjEc exp[+ ZHt)
= expl[~— i85, |F,(*, u;)v,E  exp[iH t].
Thus
[trT (Al = | (exp[iH t]E AFp,,u,)l,
[T expintdun)

2

where
uQ) = (Ec)\EcAFkvj; uj);

{E .\ X € ®} being the resolution of the identity of H o In
X,. Since H_ has absolutely continuous spectrum only,
the Radon—Nikodym derivative of u(A) with respect to the
Lebesgue measure exists and we have according to the
Riemann-Lebesgue lemma

. +00 . . +00 du(h)

lim exp[ixt]ldu(r) = lim exp[ix] ——. dx =0,
f+i00 f'°° Xp{iAt]dun) 100 f'°° xp(iN] dx 0
Hence Tk].(t) converges weakly to zero for { — = o for
eachk € {1,...,n}andj € {1,...,m} and we conclude
that

wl-limspc(t) =0
>4 00
The proof for S, p(t) is obtained in the same manner,

Comparing the above result with Lemma 3 the ques-
tion rises whether Lemma 4 does hold with respect to
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the strong topology on ®, instead of the weak topology.
That this cannot be the case follows immediately by
considering S = T,,. Then | S@)l; = | Ty;)| = | E u, |.
| Fy;l, i.e., in general S(¢) does not converge strongly
towards zero.
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The stochastic Green’s matrix is calculated for a random rough surface with Gaussian statistics and
a magnetic boundary condition. The techniques we use are similar to those developed for the scalar
and elastic cases. The coupled surface integral equations which are derived are the Green’s function
version of the Franz formulas. These integral equations are represented in K -space in a certain gauge
and a Feynman-diagram-like interpretation is given to each term in the equations. The diagram rules
have many formal similarities with the scalar and elastic rules. By using partial summation
techniques, the mean and second moment of this Green’s function are shown to be solutions to
Dyson and Bethe-Salpeter equations respectively. The Green’s function is applied to a scattering
problem. Some approximations and simple examples are presented. The lowest order approximations
agree with the standard literature results. The main advantage of the diagram method, its systematic

presentation of higher order approximations, is stressed.

I. INTRODUCTION

In previous papers! 2 we presented a formal diagram
expansion method analogous to that used in random
media propagation problems3 to calculate the Green's
function for a random rough surface. In Ref.1 we con-
sidered the scalar case of a hard (Neumann) boundary,
and in Ref. 2 the elastic case of a stress free boundary.
In both Refs. 1 and 2 we applied the Green's function to
a scattering problem. We derived the Dyson equation
for the mean of the Green's function, the Bethe—Salpeter
equation for the second moment of the Green's function,
and presented some examples of lowest order coherent
and incoherent scattering. The diagram method gives
a systematic approach to higher order corrections.

In this paper we extend our previous results to cal-
culate the magnetic Green's dyadic for scattering from
a perfectly conducting half-space bounded by a random
rough surface. The surface has Gaussian height dis~
tribution and arbitrary correlation function. The dyadic
Green's function approach is explained in the books by
Morse and Feshbach? and Hauser,5 the latter includes a
discussion of the Kirchhoff approximation with dyadics.
Previously, Levine and Schwinger® used dyadics to dis-
cuss scattering from a plane perfect conductor in a
homogeneous medium. Saxon? discussed a tensor scat-
tering matrix for electromagnetic scattering by a finite
obstacle and derived reciprocity relations and the cross
section theorem in a concise way. Twersky8 used a
dyadic formalism in multiple scattering of electromag-
netic waves by arbitrary configurations of arbitrary
scatterers, and Mitzner® used the Rayleigh perturbation
method and dyadic notation on random interface prob-
lems. A general reference to electromagnetic scattering
from random rough surfaces based on the Kirchhoff
approximation can be found in the book by Beckmann and
Spizzichino.10

Our approach has certain similarities with the above
papers in that we work with the dyadic Green's function,
but we are also interested in providing a systematic
formalism to calculate higher order corrections. The
diagram method provides such a formalism.

In Sec. Il we present the basic formalism of the prob-
lem and derive, using Green's theorem, the coupled
integral equations for what we define as the magnetic
surface Green's dyadic (matrix). The integral equations
are the Green's function generalization of the Franz
formulas rather than the equivalent but more common
Stratton—Chu formulas.11

283 J. Math. Phys., Vol. 15, No. 3, March 1974

We introduce the Fourier transforms of these Green's
dyadics in Sec. III, and by using a gauge condition argu-
ment derive the integral equations in momentum or %
space. An alternative Green's function is defined, the
kernel of its integral equation is factored into propaga-
tor-vertex-interaction form, and a diagram piece is
assigned to each of these parts. The problem is still, up
to this point, deterministic. It is shown that the inter-
action term is the same as that of Refs.1 and 2, and the
propagator is the same scalar free space Green's func-
tion as in Ref. 1. In Ref. 2 the propagator was a 1-index
object. In Ref. 1 the vertex was a scalar function, and
in Ref. 2 was a 3-index object. In this paper the vertex
is a 2-index (matrix) object. There is a strong formal
similarity (save for the number of indices) between the
diagram notation in Refs.1 and 2 and in this paper.

In Sec. IV the statistical concepts are introduced and
the Dyson and Bethe-Salpeter equations are derived
for the mean and second moments, respectively, of the
alternative Green's dyadic introduced in Sec. III. Addi-
tional diagram rules for the statistical case are shown.
Some approximations of these integral equations are
briefly discussed and examples of lowest order coherent
and incoherent contributions to the intensity are pre-
sented. Their connection to the standard literature
values is noted.

The summary and conclusions are in Sec.V,and there
is an appendix on the calculation of the kernel terms for
the integral equations in Sec. Il

Il. INTEGRAL EQUATIONS

Our problem is to calculate the Green's dyadic (ma-
trix) I";, (x,x”) which satisfies the inhomogeneous dif-
ferential equation (harmonic time dependence e %! jg
assumed throughout)

alalrin (X’ X") - aiamrmn (X,X”)
+ R3C,, (x,x") = — 06, 0(x—x") (1)

in the region V[z = A(x )] indicated in Fig. 1. Here &,
is the free space wavenumber, the abbreviation J; =
3/3x; is used (i = 1,2, 3), 6;, is the Kronecker delta, 6(x)
is the three-dimensional Dirac delta function, and the
convention of summing on repeated indices is assumed.
Equation (1) is just the matrix version of the dyadic
equation

vxVxT(x,x’) — k30X, x') = 16(x —x')
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h(x1)
_9X

/.

FIG. 1. Plane wave incident on a random rough surface z = &(x,). The
region z < f2{x ) is here considered to be a perfect conductor.

where |is the unit dyad. We use matrix notation through-
out. The notation x is used for a 3-vector in V, x for the
transverse components of the 3-vector,x, = (x,), and
x, for a 3-vector evaluated on the surface z = h(x ), X,
=(x_,k{x.)). Here the height 2(x,) is a Gaussian distri-
buted random varijable and the region z </(x,) is con-
sidered to be a perfectly conducting half-space. In addi-
tion to satisfying the differential equation (1), T, (x,x")
satisfies a boundary condition when z = Z{x,) and asymp-
totic boundary conditions when its arguments approach
infinity.

The free space Green's dyadics I')# both satisfy the
same differential equation as I",,
3,0,% (x',x) — 8,9,,I'G, (x',%)

i“mt mj

+ kgrg. x,x) =— oijﬁ(x’ —x) (2

and the asymptotic boundary conditions as |x' — x| -«
of outgoing (+) or incoming (—) waves. The + super-
scripts are temporarily dropped. Explicitly, I‘% is given
by®é

I“?J(x’,x) = Gi]GO(x’,x) + kbzaiajco(x’,x), (3)

where G9,the scalar free space Green's function satis-
fies the differential equation

(0,0, + RGO ,x) =~ 6{x' — %) (4)
and is given by

GO(x',x) = explikyl X' — x[)/|x —x|4m. (5)
Multiplying (1) from the left by I') (x’, x) and subtracting
from it (2) multiplied from the right by I';, (x,x") yields
the identity
r, (x5 —x) — ') &, x)6Ex—x")

=0,K;,®,x,x") (6)

with
K

i (& X, X)) = rg(x',x)[a,rm (x,x") — 3,T,, (x,x")]

- [Bll"%(x’,x) - air?j(x',x)]rin x,x"). (7
Multiplying (6) by the step function 8(z — k(x )), where

o fl, z > hix,),
o) = 10, z <hlx,),

integrating over all space f dx, and doing a partial
integration on the-resulting integral term (with the
neglect of the infinite surface term due to the radiation
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condition on the Green's functions) yields, for z” > h(x"),

I"]_n (X’, x//) g(zl _— h(xl))
=T9(&,x") — [dx N/(x K, (x',x,,x"), (8)
where
Ny(x,) = 6,53 — 9, ,h(x,)

is the normal into V. It can be shown that (8) is just the
Green's dyadic version of the Franz diffraction formu-
las. The latter is equivalent to but much less than the
Stratton—Chu formulas.1! Since we wish to calculate the
magnetic (u) Green's function we choose the boundary
condition

(N(x )xvxT(x,,x"));, =N,(x,)3,T,, (x,,x")
—N,(x,)9,T,, (x,,x")

=0. (9)
Further, using (3), we can write

9, I'g(x',x) — 9,I'Y(x',x) =(5,,0; — 6;;9,)G°(x",x).  (10)

Substituting (9) and (10) into (8) and differentiating by
9%, it is obvious that for z’ > h(x') and X’ # x”

T, (x,x") = 0. (11)

Hence the Green's dyadic is transverse as is usual in
these problems.?

Next, let x' — x| through positive z’ values. Equation
(8) becomes, using (7), (9), (10) and the results in the
Appendix
1/2(611. + Nj(xj_)ém)l";‘n (x,,x")

=T9 &, x") + fdePji(x’s,xs)Fg‘n x.,x"), (12)

where the y superscript has to do with the fact that T",,
satisfies (9), and with

Pji(xfwxs) =NZ(xJ.)Pilj(xls —x), (A9)
Pyyix,) = gz JARGOEE™ R, (), (a5)

R, @) = i{[k,, +6,3P(K2/k})]5,,
— [k, +0,3P(K2/k3)]6,.},  (A6)

where P stands for the Cauchy principle value distribu-
tion and K2 = k3 — k2. Here GO(k) = (k2 — k2)! is the
Fourier transform of G%(x). Further, defining the mag-
netic (y) surface (s) Green's function as

Pes(rg, X") = Q)T (%, X"),
Q,mlx?) = 1/2(8,,, + N,(x,),,3),

it is possible to write (12) as

(13)

rus (x5,x") = I‘JO,‘ (x,,x"
+ fdePji(Xls;xs)Uip (x;)rgns(x’srx”)’ (14)
where
I, (x,,x") =U,,(x )T (x,,x"),

Qjm(xJ_)UmP (xJ_) = 6]’9’
and

Upp®.) =26, =N, (x,)0,5. (15)
Equation (14) is the surface integral equation for the
magnetic surface Green's function which we will use.
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We finally wish to make two remarks. The first re-
mark is that for a flat surface (¢ = 0),N,(x ) = 6,5,2nd
it is possible to show that P,; ~ P53, ~ §;5 so that the
transverse (j = 1, 2) components of e ,x") =
2rg, &', x").

That is, for a flat surface, the transverse components
are double the value of the free space Green's function,
This is the standard result.®

The second remark has to do with an integral repres-
entation for the magnetic Green's function I‘;‘m(x’,x) for
2z’ > h(x’) (i.e., evaluated in the field) in terms of T'#s,
The derivation is similar to the derivation of (12) (but
we do not let X’ — x/) and is sketched in the Appendix.
The result is

re,(x',x") = T9,&,x") + [dx, PO, x,)U,, (x,)
X Tks(x,x"), (16)

where P9, follows from P;; by setting K2 = k% inR;,; in

(A6) and using this result in (A5) and hence in (A4).
Setting K? = k3 is called “going on the energy shell” and
was discussed in Refs.1 and 2. Equation (16) will be
useful in the scattering results later.

til. FOURIER TRANSFORMS AND DIAGRAMS

Introducing the Fourier transforms

T, x) = (o [ diedre™ s Tpsie, ke

Ly (1
o, (x,,x") = (21)°¢ [[dk'dk"e e
X (2m)36(’ — K")TY, ()em k" ", (18)
as well as (A4) and (A5) into (14), yields the result
ffdk'dk"e-ik"xlsF].n (k’, ku)e—ik".x" =0, (19)

where F,, is defined by
F,, (& k") = Tis(k', k") — (2m)36(k’ — k"), (k')

— [akL,, (', )T (k, k") (20)
and .
L, (', k) = (21)3GO(k")R,,,(K") [ dx N (x,)U}, (x,)e’* ™ "("s.)

21

If, in (19), x| were replaced by x', i.e., if we were intro-
ducing the corresponding Fourier transforms in (16) for
the magnetic Green's function in the field rather than in

(14) for the magnetic Green's function on the surface,
then the only solution of (19) would be

F,,(k,k") = 0. (22)

Since ultimately we will be interested solely in field
calculations, we choose the “gauge” condition (22) to
hold here. Further, integrating (21) by parts and neg-
lecting the resulting surface terms (see Ref. 1) permits
us to factor L,, into propagator-vertex-interaction form

L,, (&', k) = GOV, (', DA (k' —K), (23)

where G%%) is the scalar free space Green's function
in %k space (propagator) which also was our propagator
in the scalar case, V,, is the (matrix) vertex term
given by
R, (&)E —k R, — &
V., k) =—2 L Lo —5,.7, 24
%) (2m)3 ky—kg\ P PR3 —kyf (24)

where R;,; is defined by (A6), and A(k) is the interaction
term

J. Math. Phys., Vol. 15, No. 3, March 1974

285

Alk) = fdxe—ikl'xi_e-iksh(xl) (25)
which appeared in both scalar! and elastic? cases. Using
(22) and (23) in (20) yields
I"}lns(k’,k”) = (2m)36(k’ — k")I§, (k') + GO(k")

x [V,,(&,0A®K — k) Tis (k,k")dk  (26)

Defining away the delta function term by introducing the
auxiliary Green's function G7, as

ris k', k") = (2m)35(k’ — k”)I‘;)n (k)
+(21r)3GO(k’)G]$,(k’,k”)r‘?n(k") (27

and substituting (27) into (26) yields an integral equation

for G5,

G;l(k/,k") — le(k/’ku)A(k/ — ku)

+ [V, (&, RAK —KGO(R)G, &, k")dk  (28)
whose diagram rules are listed in Fig. 2. The integral
equation using diagrams is shown in Fig. 3. An analogous
procedure can be developed for the magnetic Green's
function in the field. Defining an additional auxiliary
Green's function (without superscript) G]. , as
Iy (', k") = (2m)35(k’ —k")['Y, (k')

+ (2n)3GO(k’)Gj,(k’,k")1"l0n k"), (29)
we can write the integral relation
G]l(kl’k//) — V?l(k’, k//)A(kf —_ k")
+ [V9, (', KAK —KGONGS, (K, k")dk  (30)

(@) > G+ k)
I't G (k)
[N vy @0

k_I

(c) Ir A (%)
TV

(d) Vi "

Rb/"\ " J (ZH)z 8(2 kiL)
> i=l

n
X R, (K],Kp - k) I1C (k)
i=

FIG. 2. Diagram rules associated with the auxiliary Green's function
Gs,. The propagators (a) and vertex (b) are used for both deterministic
and stochastic rules whereas the single deterministic interaction term
(c) generalizes for multiple random interactions and with a cluster
decomposition to the purely stochastic rule (d). When the rules are
combined, internal momenta are integrated over, and repeated indices
summed.

FIG. 3. Diagram rule for G§; itself, (a), and the integral equation (28)
in diagram form, (b).
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with the on-shell vertex VJQP similar to (24)

(k') &; B, —k,
V9, (i, Kk _BLE) Bk 26, — 6,3 ———
A N PR ky—ky \ 7 PSRy — kg (31)
where R, ; is defined by (Al11), Clearly, on shell,
G5k, k") = G, (k',k"). (32)

Now (29) expresses the Green's function in the field I'*
in terms of “incident” or free space Green's function I"0,
In coordinate space, and specifying the outgoing (+) wave
boundary condition, (29) is

i (x',x") = LY (x',x”) + (2m)3 [/ dx,dx,G (x' —x,)
X Gy,(xq, x)TH" (x5,%7)  (33)

and I'* is thus written as an incident Green's function
I'0 plus a scattered Green's function arising from an
1ntegra1 transformation. The outgoing scattered field
¥$? can be written in terms of the incident field y£?)
usmg this same integral transformation.

The result is

YOUx') = (2m)3 JS ax,ax,60 (& _xl)G}z(xpxz)‘//(zi)(xz)-

(34)
In (34) use the two-dimensional representation
ik -x
GO (x) = m )3 fdkle — L piklz) =VE3— 73 (35)

ax(ld expand the outgoing field in terms of plane waves
¢j0)

YOU(x) = [dk,e®xx¢O (k) (k, = + K).
Here the specification k, = + K is to insure that the
field is outgoing. Then it is possible to write in the far

field

(36)

m - iK> ,
f{i [ dx,dx e ™% G} (%1, X WAV (x5)
(kz = + K)

d)SO)(kJ.) =
(37

Similarly, expanding the incident field in plane waves

¢(lz )

,J/(t) (x) = fdkietk' x¢(z)(k') k. =—K' (38)
and inserting (38) in (37), yields
¢k, = [dE, Tk, k) (R,) (39)
with
Tk, k) =7 ffdxldxze ey G (x5, X, )e ™
(B, =+ K,k, =% K'), (40)

where we have included the incoming (—) boundary

value and its on-shell value. The latter can be derived
in a similar manner as 7*. The T, matrix is needed for
the complex conjugate fields below. The T;, matrix is
analogous to the linear connective introduced by Saxon?

T I3

>_9,p—> + n b p + n~<r r't,l" _p. +--
KK

oS zk

r
r

FIG. 4. Mass operator M, ,,(k’, k) used in the Dyson equation.
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who also derived some general properties of it. The
right-hand side of (40) is just the Fourier transform of
G;; and since we are on shell we can write

T3k, k) =5 Gk, k) =G50k, k')
kZ kZ

(B, =+ K,k, =% K'). (41)
Combining (36) and (39) we can write the outgoing field
in terms of incident plane waves as
YO = [[dr.dk,e™xT; (b, k)PPR)  (, =K) (42)
A similar discussion can be given for the complex con-
jugate fields which can be expressed as

w(o)* x) = fdk e ik X(D(O)*(kJ_) (k, = + K), (43)
Wirx) = [diie ik xoP*R,) (R, =—K'), (44)
$O* (k) = [dk, T;,(— ko, — k,)$P*(R), (45)

WOx) = [[dk,dk e ®XT;,(— by, — K)GP*(E,)
(k, = K). (46)

These latter equations are used later in the discussion of
the intensity.

IV. RANDOM ROUGH SURFACE

We have presented the deterministic results in the
previous sections in some detail. The purely statistical
aspects of the problem however have been thoroughly
discussed in Ref. 1. A brief discussion of the statistical
aspects, suitable as an introduction to this section, was
presented in an introduction to Sec. IV of Ref. 2, and we
refer to this latter discussion rather than reproduce it
here. In fact, the entire discussion of this section
closely parallels that of Sec.IV of Ref.2. The only addi-
tional diagram notation we need is shown in Fig. 2d,
where some of the R, functions are explicitly listed in
Ref, 1 (see Ref. 2 for the misprint in R,). Here C(k,) =
exp[— iT'(%)%2]is the characteristic function and F(,x) the
two point correlation function. Using partial summation
techniques,3 the mean of G5, (G5,) can be written as

Gk, k") =M, (&', k") + [M,, (k' K)GO(R)

X (G5 ,06,k")dk, (47)
where the sum of connected diagrams or “mass opera-
tor” M, is shown in Fig. 4. Note the formal similarity
of Fig.'4 here with Fig. 3 of Ref. 2. Equation (47) is the
Dyson equation of our problem. A transverse delta func-

tion can be factored out of M, and hence out of {(G,) as
M, (&, k") = 6(k, — ROM,,(k,, k}), (48)
G5,k k")) = 6k, — k)g5,(k;, k), (49)

where the transverse momentum dependence of J—W_ and
g5, has been suppressed. Substituting (48) and (49 1n
(4’7) yields

gk, k) =M,k BY) + (M, (K, k,)GOk)

X g5, (k,, k)dk,. (50)
This is called the reduced Dyson equation. The full
Dyson equation, i.e., the Dyson equation for (I‘;‘f , can be

written as
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(res (e, k") = (2m36(k' — k")T?,(K')
+GOR') [arM,, (&', kXTE(k, k")),  (51)
As a simple example, choose for M, the first term in

the expansion in Fig. 4. Then, using (48), (29), and the
diagram rules, we can write

n—aﬂ(k;, k) = VIP®&)C(k, — k) (52)
with
VD (k') = (2m)2V, & k") 4 2wy

i K2 K’2>
=18, |k +6,P[—)|—6,,P(— )
7 3 ’3[”* b3 <k'3 )] » <kg %

so that (50) becomes
g5, (k,, k) = C(k, — R)VPE')
+ VK [Clk, — k,)GOk)gS, (k,, k2)dk,

(5
which is similar to Equation (42) in Ref. 1 and Equation
(4. 14) of Ref. 2. (Also see footnote 9 of Ref. 2).

In order to calculate the second moments, use the
mutual coherence function C,,,, given by

Con (%, %) = WO O (x')). (55)
Substituting (36) and (43) in (55) yields (k, = K, k, = K’)
C o (%, x) = [[dk k) eexk"xV (5 Ok ) (O* (k1)) (56)
and, using (39), (41), and (45), we have
(PO, )pLOM*(R))
= [[ar1ari (T, Ry, RDT; ,(— KLy — RN DR GS* (k1)

2 ; :
= [[drary I—:—K— (Gsi(k, k"G5 (—k, — k) ¢ (k) oS (RY),

(57)
where k, = K, k! =—K", k, =K’,and k? = — K".
Again using partial summation techniques, the re-
duced Bethe-Salpeter equation is
G50k, k)G &', k1))
= (G0, k INGs, ', kY) + K, (K Ky, k)
+ [ ARGK (6,1 [Kg, KY)G O (k)G 5K, K1)
+ [ kLK, 0, [y, KGO (kNG (K, KY))
+ [[drydk5K 06, K Ky, k)
X GO(ky)GO (k)G (ky, k)G (K, k1)), (58)

where the function K, ,, ,, corresponding to the intensity
operator of random volume scattering theory,3 is given
by the sum of connected diagrams in Fig.5. The full
Bethe—Salpeter equation can be written using (27) and
(58) as

Irs: (k, k)Iy, &, k,)»
= (T, (e, kXS (&, k) + GO (RGO (k')
x [[dk,dkyK,,, (&, K Ky, koS (ky, ko) T'5; (K, k9)).
(59)

As previously mentioned, 2 it is possible to reduce the
dimensionality of the integral equations by using the
translational invariance of K,,,, , so that (58) and (59)
are four-dimensional integral equations. It is simpler

however to discuss some . examples, and that is how we
proceed.

If the incident field is a plane wave

¢fk,) = 6k, — Ry )X s o
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- ind - hd I
kK k PN k
n m ~n_ m@“
B o
O, . *+ O, + +2 Q0 +---
D cr I ARG
Al g ' b w ] - T
P—q pq | 1 7 q
FIG.5. Intensity operator K, , (kK Kk’ |k”, k™) used in the Bethe~-
Salpeter equation.
> - —_ -
k ki (b) k ki
(a) >——9——> —— 9 T
m | Vo —»
- —» H k— {
tk—kj '®)
P> >
-_I:' 'ri’ . ki;k’
m 5 p -‘K‘ -kj
LKk m~p

FIG.6. Lowest order coherent (a) and incoherent (b) contributions to
the intensity.

where y ; indicates the direction of the wave (polarization
factor), then (57) yields a definition of intensity I if we
substitute (60) into (57), multiply by 6,,,, and sum to yield

olk, — Rk, k;,)
_ T2
T KK’

Here I{k, k;,) is the intensity in the &, direction due to

an incident plane wave in the k,, direction, k2, = K, %/,

=K and k;, =—K,.

The lowest order coherent contribution (I¢) to the
intensity is shown in Fig. 6a, with the additional on-
shell conditions above. Using the diagram rules we get

14k, k) = 0k, — B, ) )2, (62)

where the delta function indicates specular scattering
and where the scattering function f,, is defined by

C(2K)
fm(kii) =9k [(qul + Ki6q3)6m3

(G510, k)G, (— K, —k))x ;x5  (61)

~ K;Bym) (2x, — 8,3 X3)-
(63)

Some further simplifications of these results are possible.

For a horizontally (H) polarized incident field (x ; = x 5

=0, xp, =1),we get (k,, =0and k;, =k, =k, sing,,

8, the incident angle)

| F8(k;,)|2 = C2(2K,) = exp[— 4k2T(0) cos28,]

which is the standard result,'2 and for a vertically (V)
polarized incident field (x, = 0, x; = cosé,, x; = sind,),
we get

[fr(k. )12 = [(K2 + k2))/K2]C2(2K;) cos28, = C2(2K,)

which is the same as the horizontal polarization for this
lowest order term. Note that for I'(0) = ¢2 — 0, both
|f4]and |f7|— 1 which is the usual result for flat sur-
face scattering.

As a final example, the lowest order incoherent (i)
contribution to the intensity is shown in Fig. 6b. Using
the diagram rules and the on-shell conditions 2, = K =
k), and k;, = — K,,the result is
19k, k) =R,(k, —k; ,K + K, ,—~K—K)| g, (k,k; )2,
where

212
gm(kx! ki.L) = T le(k’ ki)XlC(K + Ki)

with V9, given by (31) and the function R, given by.13
Ry(ky, ky) = fdy J_e_ik“'y*(e_r(“—)kukzz -1
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and the remark that
R (kl,k )=R (kl,kzz) = z(k
and k, — k,,

k

1 12’ 22)

=K +K,

V. SUMMARY AND CONCLUSIONS

The diagram expansion method of calculating the
stochastic Green's function for scattering from a ran-
dom rough surface has been extended to Electromagne-
tic problems. The particular problem here concerns a
Gaussian distributed surface bounding a semi-infinite
perfectly conducting medium. The methods we dis-
cussed were mainly in keeping with a systematic and
formal presentation of the problem although examples
of lowest order coherent and incoherent contributions
to the intensity were discussed and an approximation
for the Dyson equation was presented. Using the diagram
rules, higher order corrections are trivial in principle
to write down, although in practice many difficulties re-
main as far as approximation methods and computation-
al difficulties are concerned.

Finally, it was previously remarked in this paper that
the diagram notation in the scalar?! and elastic? cases
was similar to that for the electromagnetic problem
here. The functional forms for the propagators, vertices,
and interaction for the three cases are summarized in
Table I. Generally, the interaction term is the same for
all three cases, the vertex terms are considerably dif-
ferent in each case, and the propagators are the same
in the scalar and electromagnetic cases. The elastic
propagator is a vector with components G4’ having the
functional form of the free space Green's function G,
but with the free space wavenumber replaced by the
transverse () and longitudinal (I) wavenumber,
respectively.
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APPENDIX: KERNELS OF THE INTEGRAL
EQUATIONS

In this appendix we calculate the kernel functions
which arose in the integral equations of Sec. II. Using
(7), (9), and (10), Eq. (8) can be written as
rs, x',x"0(z’ —A(x"))

=g (x,x") + fdx N, (x,)(6
xT¥ (x,,x").

6,06, x)
(A1)

l]z

From Ref. 1 Appendix A, we can write

.G %, x) = fde (k)e™ " 1x"xs] Byt 0, P<I3 )}
4

" —h(x'))dlx,

where the symbol P stands for the Cauchy principle
value, and €(z) = 0(z) — 6(— z). Hence we can write

@n )3

— 36,,5€(z —x,), (A2)

TABLE I. Functional forms for the diagram pieces in the scalar
(Ref. 1), electromagnetic (here), and elastic (Ref. 2) cases.
Propagator Vertex Interaction
Scalar Golk) Vik, k) A(k)
Electro-
Magnetic  Gy(k) Ve &, k) Alk)
Elastic P (k) = Vo o (Ks k') Alk)
(Gh(R), Gh(k), 1)
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N, (x,)(8,,0; — 0,,9,)GOx’, x,)
= P,(x,xy) +3e(@’ —h(x\ )8(x\ —x )5, — N,(x])6;3),
where (43)
Pﬂ.(x’,xs) :Nl(xL)P”](x’ —Xx,), (A4)
Py,x) =(@2m)3 [dkGO(k)e™ =R, (K), (A5)

and
2 2

w0 = oo [ ol
(A6)

If we substitute (A3) into (A1) and let x’ — x’, through
positive z’ values (¢ = 1) we get the result shown in
Eq. (12) of Sec.IL

Now the singularity in (A2) arose because the point
z’ was to be evaluated on the surface 2(x’). If we wish
to calculate the Green's dyadic in the field [z’ > h(x])]
this is not the case. No singularity arises. Hence we
do not need to go through the procedure of Appendix A
of Ref. 1. We can write the Fourier representation of G©

Go(x',xs) = (2m)73 fdeO(k)eik'(x'_xS)

and differentiate it directly to get

fde zk'(x’-xs)'

BG(x x)-zZn) (A7)
We can get (A7) from (A2) if we drop the singular (delta
function) term and set K2 = k% in (A2). The latter is
called “going on the energy shell” and was discussed
previously.1.2 Hence, by direct differentiation or by going
on the energy shell we can write for z’ > a(x")

N,(x,)(6,,9; — 6,260, x,) =PO(x',%x,),  (A8)
where

PJOi(x’,xs) =N,{x,)P zl](x —x.), (A9)

PY.(x) = (21)3 [dKGO (Kle®*RY (), (A10)

(k) =ik, 0,;, — k0, ). (A11)

llJ iy

Substituting (A8) and (15) into (Al) yields the integral
relation (16).
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Kay and Balanis have reduced various inverse problems in wave propagation to the solution of
Fredholm integral equations. These integral equations can be further reduced to Cauchy systems.

1. INTRODUCTION

In two basic papers Kayl and Balanis2 have shown
that certain inverse problems in wave propagation re-
duce to solving the Fredholm integral equation
0=R(x+ ) + U, D+ [ R(+Y) Uy,

—x s t<x, 0 = x,

where the function R is an observed reflected wave, and
the function U is to be determined. More precisely, it is
the function

V(%) = = 0(x, %),

0<x,

that we wish to find, for it is directly related to the den-
sity of the medium. In this paper we shall show how
this may be done directly, i.e., without solving the in-
tegral equation for all values of ¢ in the interval

[= x, + x]. Other inverse problems involving the fitting
of differential equations to experimental data are con-
sidered in the book by Bellman and Kalaba.3

2. DERIVATION OF THE INITIAL VALUE METHOD
FOR THE INVERSE PROBLEM IN
WAVE PROPAGATION

Consider the family of Fredholm integral equations

0=R(x+ ) + Ulx, ) + [ R(t + y)U(x,y)dy,

—x<stsx, O0sx, (1)

for the unknown function U. The function R has the form
1 0
R+ ) = = [, emistor(a)dz, (2)
7

where the function 7 is known, and we desire to deter-
mine the physically meaningful function V given by

V(x) = % U(x,x), x>0, (3)

We shall show how this may be done without actually
solving the integral equations in Eq. (1) for all x > 0.

We introduce the auxiliary function J,

J=dJt,x,2), —x<stsx,—olz<x (4)
to be the solution of the integral equation

0= emizt + J(1,x,2) + f_’; R(t + ), x,2)dy.  (5)

In view of Eqs. (1) and (2) we see that the function U may

be expressed in terms of the function J as
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U(x,t) = —21-17- f_: J(t, x, z)e"t25y(2)dz. (6)

Now we consider determining the auxiliary function J
as the solution of a Cauchy system. We differentiate
both sides of Eq.(5) to obtain the relation

0=4Jd.(tx,2)+ R+ x)J(x,x, 2} — R(t — x)J(— x,x, 2)
+ [T R+ 003,20, (D)

which is viewed as an integral equation for the unknown
function J . Its solution is

J(x,%x,2) o0 - o
Jx(t’ X, Z) =0 f_oo J(t’x’zl)e_lz x/r(z )dZ
J—x,%,2) )
- fco J(t,x,2")eiz’*y(z")dz".  (8)
7 -

Now let us rewrite the integral equation in Eq. (5) in
the form

0 =e 2t + J(t,x,2)

* 1 «© —-izt+ ’ ’
+ f_x P f_w e iy (2Yde 'Sy, x, 2)dy.  (9)

From this it follows that
Tt x,z) = —eizt — L [ gmizipz’ 2 xW(z')dz’,  (10)
27 T

where we have introduced the basic function p through
the definition

x .
p(v,2,x) = [ e iwd(y,x, 2)dy,

—woly,z<o 0=<x. (11)

In particular, it follows that J(x, x, 2) and J(— x, x, 2)
can be expressed in terms of p as

Jx,x,2) = — e i2x — El— f_m e i#xp(z’ 2, x(2’)dz’  (12)
7
and
J(—x,%,2) = — e*i2x — ZL f_oo eiz'xp(z' z,x)r(2'ydz’. (13)
i
Thus the problem of finding J, and hence U, is reduced

to that of finding the function p. We shall now obtain the
Cauchy system which the function p satisfies.

We differentiate both sides of Eq. (11) to obtain the
equality

px(vy z,x) = e—iUxJ(x’x’ Z) - e*iva(_ X, %, Z)

x :
+ [ e, x,2)dy. (14)
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We can evaluate the integral in the last equation by
using Eq. (8). The result is

@© "
I e vd (v, %, 2)dy

fx ~ivy J(x’xyz) «© o
= L e (= L J0x wemiss riwdu
J(_ X, X, Z) o .
— T L ek e Vay, (19)
27 -
But making use of Eq.(11) this becomes

© s
f_w ey (y,x,2)dy
J(x, x, z)

= 97 j—oo wo, u, x)e"i”‘"?’(u)du

J—%,%,2) e
——S—Q%—)-C-—Z)- f_co oo, u, x)er * r{u)du, (16}

Thus Eq. (14) becomes
. 1
p,.(v,2,%) = J(x, %, 2) (e-wx i L., v, u, x)e'i"xr(u)du)
T
[2e]

— J{— x, %, z) (e“’" + 51;; f_w plv, u, x)

% eiuxr(u)du), (1n
Finally, by using the results in Egs. (12) amd (13) we
find that the function p satisfies the differential

equation

px('U,Z,X) =

. 1 7%
— (e—zzx + —2—. foo e”“'xp(z"z,x)f(z’)dZ')
il
. 1 = ;
X (e"wx + .2_ f.oo p(v, u,x)e”tuxr(u)du>
T

. 1 ¢
+<€”"2 + = f eiz’xp(z”z,x)T(Z')dZ’>
2n 7%
< givx +.."

And from the definition in Eq. (11) we see that the initial
condition on the functionp at x = 0 is

” pv,u x)eww(u)du> (18)

—oo Yy z<w 0s<x.

p(v,2,0) =0, —o<v,z2+ =, (19)

Once the function p has been determined, the function J

is given by Eq. (10), and then Eq. (6) yields the function
U. As was pointed out earlier, though, in Eq. (3), we are

J. Math, Phys., Vol. 15, No. 3, March 1974

290

not interested in the function U for all values of f in the
interval (— x, x), but only in the value of the total deri-
vative of U with respect to x at ¢ = x. We shall now
show how this may be determined directly, that is,
without determing U.

We observe that

d o 2
SU %) = =2 U, Bl,.. + = U, 0, (20)

From Eq. (6) we see that

1

E; -0 [Jx(x7 X, Z)e—ézx

2 !
SEU(x) t)itf—x =
— dzd(x,x, 2Ye 25 r(2)dz . (21)

Keeping Eqs. (12), (13), and {8) in mind, we see that the
right-hand side of Eq.(21) can be expressed in terms of
the function p. Also we have

——U( 0|, 1 f I %, %, 2Ye = w2 Ydz", (22)

We can evaluate the function J,{{, x, z) in the follow-
ing way. From Eq. (5) we find that o

0 = ize &t + J(t,x,2)

+ f-x 21 f (— aw)e ¢ Dy (w)dud(y, x, 2)dy.  (23)

This implies that

o
It x,2) = ize it + 1 f
27

oo ueTIip(u, 2, xyr(u)du,  (24)
which expresses the function J; in terms of the basic
function p. This completes the demonstration.

3. DISCUSSION

In this paper we have presented the analytical aspects
of a new approach to the integral equation of Kay and
Balanis. The numerical aspects remain to be consider-
ed, but much previous experience with related initial
value problems? indicates the efficacy of the approach.

1. Kay, Commun. Pure Appl. Math. 12, 371 (1960).

(. Balanis, J. Math. Phys. 13, 1001 (1972).

*R. Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary
Value Problems { American Elsevier, New York, 1965).

4]. Casti and R. Kalaba, Imbedding Methods in Applied Mathematics
(Addison-Wesley, New York, 1973)
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The formulation by Mulherin and Zinnes of two-particle Coulomb scattering theory is extended to
the multichannel case. The wave operators so obtained are proved by a direct method to be identical

with those of Dollard.

1. INTRODUCTION

Several years ago Dollard!-2 established a time-
dependent multichannel Coulomb scattering theory that
is mathematically coherent and physically plausible.
Subsequently, proceeding along quite different lines,
Mulherin and Zinnes3 attempted to develop an alter-
native formalism, They were successful in the two-
particle case and proved that their wave operators were
the same as those of Dollard. They were not, however,
successful in the general multichannel case, the problem
thus remaining open.

The purpose of this paper is to complete the program
of Mulherin and Zinnes by providing a multichannel
generalization of their two-particle theory. Our interest
in the matter is twofold. First, apart from rather con-
vincing plausibility arguments advanced by Dollard,
there is no evidence, theoretical or experimental, that
we have seen supporting the physical validity of his
multichannel theory. Since the somewhat different
approach of Mulherin and Zinnes is equally plausible,

a proof that the two multichannel theories are equivalent
would be important evidence that the theories are physic-
ally sound and therefore worthy of further study. Second,
the form of the generalized Mulherin- Zinnes theory
would provide a concrete example of a mathematical
formulation currently being advanced4~6 for the general
problem of scattering by long range forces.

This paper is thus devoted to extending the Mulherin-
Zinnes theory to the multichannel case and to proving,
by a method somewhat more direct than the original
one, that the channel wave operators exist and are equal
to those of Dollard.

2. STATEMENT OF THE THEOREM

Consider a system of N spinless distinguishable
particles scattering into a channel 8 in which the par-
ticles are arranged into n clusters. At least two of the
particles are assumed to be charged. The positions? of
the centers of mass of the clusters are denoted by vec-
tors X = (x4,...,X,) in R3” and their corresponding
momenta by K = (k,,...,k,). The masses of the clus-
ters are denoted by m,...,m, and a diagonal mass
matrix M is defined by the equation MK = (mk,, ...,

m k). The charges of the clusters are denoted by the
charge numbers z4,...,2,.

Because of the long range character of the Coulomb
force the asymptotic clusters cannot be assumed to be
freely moving, in contrast to the usual scattering theory
for short range forces. A weak residual interaction
must be built into the asymptotic time-dependent wave
functions. The difference between the theories of
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Dollard! 2 and of Mulherin- Zinnes3 lies in how this is
done.

In the theory of Dollard the asymptotic wave func-
tions for the channel 8 are constructed as follows.
Auxiliary functions are defined:

OE, X, 1) = 3, [k, x, — ¢/2m )|k, | 2],

s=1

vEX=-a T

1=r<s=n

(2.1)

z,z,| k,/m,)— &/m)l? Inat |
(2.2)
where a is the fine structure constant; and

A*rs = (mr + ms)_l[| mrks - mskrl [ X, — xrl t (mrks~ mskv)

‘x, —x,)]. (2.3)
The function
f5X, t) = (2n)37/2 [ dKf(K) exp[i¢ K, X, 1)
t iyt (K, M-1Kt)], (2.4)

where 7 is a suitably chosen square integrable function,
is used‘to describe the motion of the cluster centers of
mass. Finally, the asymptotic wave functions for channel
B are written in the form

Fp () = f5(X, 1) gge 55

where g, is stationary bound state wave function and E
is the total bound state energy appropriate to the clus-
ters of the channel.

(2.5)

The distinctive feature of Dollard's theory is that the
spatial variation of the asymptotic wave function f} is
of a plane wave type, represented by the exponent ¢,
just as in the short range theory. The long range nature
of the Coulomb force is introduced by altering the usual
time dependence, also contained in ¢, by inclusion of the
exponent +(K, M-1Kt).

One might argue, on the other hand, that one should
leave the time dependence alone and instead represent
the motion of the clusters by a superposition of dis-
torted plane waves. This approach, suggested by the
well known time-independent theory for two particles,
is the one adopted by Mulherin and Zinnes.? Their
theory is generalized to the multichannel] case by re-
presenting the system asymptotically with wave func-
tions of the form

Fouz,p(t) = fsX, )gge™""8".
Here f;, is defined by

fi X, t) = 2y 37/2 [ dKF(K) expli¢ (K, X, t) + iy*(K, (:20]7,)

(2.6)
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and f,gﬂ, and E, have the same meanings as before.
The function y* ?K, X) clearly provides the advertisied
distortion of the plane wave structure of ¢.

One easily verifies that the formula (2.6) reduces
in the two-particle case to the corresponding one of
Mulherin and Zinnes. Since there are no bound state
wave functions g, appearing in the two-particle prob-
lem, one identifies F} , of Eq.(2.6) with f},; of Eq. (2. 7).
Variables appropriate to the center of mass coordinate
system are introduced:

R = (mx, + myX,)/ (my +m,), r=x,—x,, (2.8)
p=k, tk,, k= (mk,—mk, ) (m; +my). (2.9)
In terms of these coordinates one has
¢®&, X, 1) = {p" R~ [t/20m; + my)]|pl?}

+ [k>r — (t/2m)| k]2], (2.10)
YK, X, 1) =— oz z,m| k[ In(l k| | r[ £ k-r), (2.11)

where m = mym,/ (m; + my) is the reduced mass of the
system. If f(K) is assumed to be a product 7(K) =

f 0(p)jf\1 (k), then the function f}, factors into'a product
of two functions. The first represents the free motion
of the center of mass and hence, because the paper of
Mulherin and Zinnes deals only with the relative motion
of the particles, is suppressed in their formulas. The
second factor,

@2n)-3/2 [ dkf (k) explik* r — (¢/2m)| k|2]

Fiaz;zom k[l In(l k| Il k- 1)}, (2.12)
is precisely of the form used by Mulherin and Zinnes to
represent the asymptotic motion of the system (cf.

Egs. (13) and (19) of Rei. 3].

Now that the asymptotic wave functions have been
defined, one can speak of the channel wave operators.
In Dollard's theory these operators &} are defined on
product wave functions fg, by

Lim [|Q4/g, — ¢ #F5 5 (Dl = 0. (2.13)
Here || || denotes L2 norm, and f denotes the Fourier
transform of f. The self-adjoint operator H is the
Hamiltonian, including Coulomb interactions, of the
system. Existence of the channel wave operators in the
Mulherin- Zinnes theory is established in the following
theorem.

Theovem: Let the notation of the previous para-
graph be adopted. Assume that f(X) is the Fourier
transform of a Schwartz test function F(K) with com-
pact support.® Assume further that f(K) vanishes in
neighbourhoods of the hyperplanes m Xk =mk ,

1 =7 <s =n. Assume that Qifg, exists. Then the
equation

lim (192} fgg — e #tF, o(1)] = 0

is true.

(2.14)

The theorem states not only that the Mulherin-Zinnes
channel wave operators exist on functions f of the type
specified, but also that they are equal to the Dollard
operators. Since functions f of the type demanded by
the theorem are dense in the space of square integrable
functions, one concludes that the two theories are
equivalent.
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A proof of this theorem, by a method different from
and somewhat more direct than the two-particle proof
of Mulherin and Zinnes,3 is given in the next section.

3. PROOF OF THE THEOREM

A proof is given for ¢ — o, that for { - — « being
essentially the same.

The triangle inequality, Eq. (2. 13), and the unitarity
of the operator et imply that the theorem is true if
and only if [[ Fj o(t) — F; o(®)ll vanishes in the limit
t - . From this fact, and from the definitions of F}
and Fzﬁz. gs it follows immediately that the theorem is'
true if and only if

lm [ dX| f3(X, )~ 4%, )2 =0,
>+ o0
where fj and f;, are defined by Eq.(2.4) and Eq. (2.7),

respectively. A necessary and sufficient condition for
Eq.(3.1) to be true is that

(3.1)

3{2 [ dX| Ry(X, t) — Ry AX, )12 = 0. (3.2)
Here R, is defined by the equation
RyX, 1) = f3X, 1)~ H1 (m /)3 2F (MX/t)
x exp[i¢ MX/t,X, t) + iy MX/1,X)], (3.3)

and R, is defined by the same equation with the sub-
script D replaced by MZ. To prove the theorem, there-
fore, it is necessary and sufficient to prove Eq. (3. 2).

Dollard has already proved? that for every set of
integers {pl, cens pn} there exist constants C and u such
that the inequality

n
| RpX, )| = Ct-Gn+1/2 (nt)r 11 [1 + Gm) x;1/6)] %
i=1 (3.4)
is true for ¢ > 1. Since R, is bounded and continuous,
and hence measurable, it follows that it is square inte-
grable in X for all fixed £ > 1 and that
lim [ dX|R,X,t)[2 = 0. (3.5)
{0
By the triangle inequality, therefore, a necessary and
sufficient condition for the theorem to be true is that
lim [ dX|R, (X, 1)|2 = 0. (3.6)
t-—00
For notational convenience, the subscript MZ will
now be dropped for the remainder of the proof.

The function R(X, t), and hence also | R(X, t)12, is
clearly a measurable function of X for each fixed
t > 0 since it is bounded and continuous at all points X
in the complement of

(3.7

a set of measure zero in R3%2, Therefore if there exists
a positive integrable function S(X, ¢) such that for ¢ > 1

E={X|x, =x, for somer ands,1 =7 < s = n},

* the inequality | R(X, #)|2 = S(X, t) holds, and if

lim [ dXS(X,t) =0, (3.8)
o0

then R is square integrable for each { > 1 and Eq. (3. 6)
holds.

In establishing the existence of the function S(X, #) and
thus completing the proof of the theorem, one may
assume without loss of generality that the (compact)
support of f lies in the interior of a cone
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C(N,6) = K| imk, —mk,)-@,—n,)

= cosflmk,—mk,| In,—n,l,

l=r<s=unf. (3.9
Here N = ,n,) is an arbitrary fixed vector and
0<o< (7r/ 3 Were the support of f not contained in

such a cone, use of a suitable partition of unity would
permit 7 to be written as a finite sum of functions f 5
each with supports in cones C(N] ). Linearity then
allows Eg. (3. 6) to be proved for each f separately.
Hence the additional support property can be assumed
at the outset.

The remaining calculation of S is divided into two
steps.

Case A: MX & C(N, 6)

In this case F(MX/t) = 0 so that R and f* are
identical.

To calculate S it is convenient to define

< v
T£<t2+ > |xs|2> 2

s=1

(3.10)
and consider the function (1 + 72)¥R, where N is an
arbitrary integer.

Trivial algebra yields

(1 + 72)¥R = (27)37/2Q exp[ipMX/1,X, 1)),

where
QX, t) = (1 + 72)¥ [ dKF(K) exp[— (i72/20)x (K, X, {)
+iyrK X)), (3.12)

(3.11)

XK, X, 1) = 12 2 m; (3.13)

s=1

Note that (¢/7) and (X/T) are bounded quantities. Hence
X is actually a function of variables {K, (/ 1), X/ 7)}
that range over compact sets. It follows from the con-
tinuity of x that there exists 6 > 0 such that x = d uni-
formly for K in the support of f and X such that

MX ¢ C(N,0).

The problem now is to compute a bound for . First
define the operators

DO = T_l E (tka— maxa).va’
a=1

(3.14)

where v denotes the gradient with respect to k ;, and

D, = x1D,,. (3.15)
One now easily verifies that
Q(X, 1) = [ dKFetV*(1 — D)Ne-ir¥20x, (3.16)

The required bound now follows from partial integra-
tion of Eq. (3. 16).

This partial integration is justified by an appeal to
the divergence theorem. The usual statement of this
theorem requires, however, that derivatives of the
integrand be continucus. This requirement is unfor-
tunately not met in the present case because of the
singular nature of the function y+. The support pro-
perties of f allow one to ignore singularities of the
type | mk, ~— m k_|-m, where m is some integer. The
other singularities generated by application of powers
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of Dytoe iv* are at worst logarithmic in K, a clear
implication of the explicitly calculated equation

& /m)|-1}
(3.17)

One generalizes the divergence theorem to accommodate

the weak logarithmic singularities encountered here by

applying the usual theorem in the region exterior to

an e-neighborhood of the singular set and letting € go to

Zero.

Dolnay, =7t — |x, — x| | &,/m,)—

Since f has compact support the surface terms
vanish and the partial integrations yield

Q = [ dRe~Gt720x{1 — (D, + (3nt/7))x"1]|2INe W7,

(3.18)
One now calculates the derivatives in Eq. (3.18) to
obtain a bound for ¢ and hence for R. The result is a
bound of the form

|RX, )]

n
5<1 f2t [xS|2>' 5 AQe) 0 Inlx, —x | "7,
s=1 ”rs r<s (3 19)
where the sum is over all sequences {v } of integers

v, such that 3 v, = 2N, and where the A({v .J) are

rs
constants.

The bounding function S(X, ¢) for MX ¢ C(N, #) is the
square of the right-hand side of Eq. (3.19).
Case B: MX € C(N, 6)

To deal with this case one writes the function f*(X, ?)
as

frX, 1) =g*&, X, ) x5 (3. 20)
where
g*X, X", ) = (2n)37/2 [ dKF(K) exp[i¢p (K, X, 1)
+iy+(K,X)]. (3.21)

By considering the variable X’ as fixed and following
Dollard (Chap. III, Sec.II of Ref.1; Lemma 2 of Ref. 2)
in the treatment of the variable X one obtains

RX, t)

= I;I (m,/ 2mit)32P (X, X!, Ol . g eXplidMX/t, X, 1)], (3.22)

where [compare Eq. (68), p. 129 of Ref. 1; Eq. (45) of
Ref. 2]

PX, X' 1) = f dY¥g+(Y,X’, 0)A(Y, 1) exp((i/t) Z: msxs.ys> ,
(3.23)
A(Y, t) = exp[io(MY/1,Y, £)] — 1. (3.24)

The problem now is to compute a bound for P(X, X’, {).

First, however, one must consider the function

g+(¥, X’ 0). It is clear from the assumed properties of
f that all derivatives of g+(Y, X’, 0) with respect to Y
are bounded. One also needs, for arbitrary N, a bound for

n
1(Y, X) E<1 £ 51yl 2>Ng+<Y,X', 0). (3. 25)
5=
To obtain this define the operator
Dy = <E|y12>1/22y -V, (3.26)
s=1
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where V_ denotes the gradient with respect to k ,. Then

B(Y,X7) = (2u)y3n/2 [ dKFesw*[1— DY exp( > K, ys)

(3.27)
Integration by parts, using the divergence theorem, is
justified by the assumed properties of 7 and the fact
that for MX’ in C(N, 8) — E and K in the support of 7
the function Y * has continuous derivatives with respect
to K of all orders. By explicit calculation one verifies
that

D, InAz —-(Z}ly ‘ ) Ve[| g, — x| m,y, —

X [lmrks _msk'r

my,)zg,]

| &, —x,) 2, [T (3.28)

z, = X, = x| mk, —mk,) + |m), —mk,| (x, — x}).
(3.29)
Using the fact that both K and MX’ belong to C(N, 6),

where 0 < § < 7/2, one easily computes the inequality

|D, InA: | < 2(m, + m)(1 + cos20) | mk, —mk, |1,

(3.30)
The implication of Eq. (3.30) and similarly computed
bounds for higher powers of D, applied to InA:, is that
application of powers of D, to e¥* can give at worst
logarithmic behavior in X’. Performance of the partial
integration in Eq. (3. 27) thus leads to a bound of the
form

@ x,01=(1+ 3, Iy,12) 5,

v
x T | 1In|x, — x| |"rs,
r<s

(3.31)

where the symbolism has the same meaning as in Eq.
(3.19). It is also clear from the preceding discussion
that a similar bound holds for derivatives of g+ with
respect to Y.

One now slavishly imitates the technique of Dollard
(Chap. III, Sec. II of Ref. 1; Lemma 2 of Ref. 2) to obtain
for ¢t = 1, and arbitrary N, a bound of the form

2 C({Vrs})

{v, g}

x II r x| Vs,
r(sllnlxr sl'

n

| PX, X/, 1)| = 172 (1 w123 |, |2)-~
§=

(3.32)

The bounding function S(X, t) for MX € C(N, ) is now
easily derived from Egs. (3.22) and (3. 32). The proof
of the theorem is thus completed.

4. SUMMARY

In summary, the two-particle Coulomb scattering
theory of Mulherin and Zinnes3 has been extended to
the general multichannel situation. In addition, the wave
operators of the generalized theory have been shown
to be identical on a dense subset of functions to those
proposed earlier by Dollard.1.2

The proof given here appears to be more direct than
the original one of Mulherin and Zinnes, and in fact we
have found no obvious generalization of their argument.
The present proof takes advantage of the distinction
(Cases A and B) between vectors X outside the velocity
conelO of f and those inside, a distinction known to be
useful in relativistic scattering problems10-12 a5 well
as in the physical interpretation of nonrelativistic
scattering theory.13 Whether this distinction is useful
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in other nonrelativistic problems is a question for
further research.

Finally, note that the generalized Mulherin- Zinnes
theory can be written in a slightly different form. De-
fine the mapping K% from the subspace of product wave
functions jfg, into the full Hilbert space LZ(R37) by the
equation

Kifgs = Fyz,5(0).

The operator K thus represents the effect of the resi-
dual long range interaction between the asymptotic
clusters. Although no specific properties, such as
boundedness, of the operator K3 are known, Eq. (4.1)
does imply that the wave operators Q* can be written

(4.1)

2 = lime 'K et 4.2)
t>x00
on a dense set of vectors. Here the operator Hg is the

channel Hamiltonianl 4 appropriate to channel B The
possibility of such a representation for the wave opera-
tors was already noticed by Mulherin and Zinnes in the
two-particle case [Ref. 3, Eq. (39)]. This same type of
representation, although with different operators K%,
has recently been investigated by several authors in the
more general context of long range scattering.4~6 The
generalized Mulherin- Zinnes theory can be considered
therefore, as a concrete example, the physics and mathe-
matics of which are well understood, of these more
general formulations.

Note added in proof: The result of this paper has been independently
reported by L. Rosenberg [Phys. Rev. D 8, 1833 (1973). He does not
give a proof but refers instead to unpublished work of P. J. Redmond .
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subscript m, in Eq. (52) is to be replaced by f. Dollard’s function

Rris related to Rp by Rp = I(mg/it)*” explio(MX/t, X, )}Rf The
extra factors of 27 in these equations arise from a different normali-
zation of the Fourier transform. The treatment of the variable ¢ in
these equations is slightly different from that of this paper, but is
easily seen to reduce to the same thing in the limit ¢ - oo, a fact
Dollard himself notes on p. 121.

'°D. Ruelle, Helv. Phys. Acta 35, 147 (1962).
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Stapp, J. Math. Phys. 10, 826 (1969).

3], D. Dollard, Commun. Math. Phys. 12, 193 (1969) and J. Math.
Phys. 14, 708 (1973).
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An explicit solution is given to the boundary value problem for certain linear differential-difference
equations. The solution is well behaved even in the presence of advanced interactions. Interest in
these equations arises from study of time symmetric electrodynamics.

Time symmetric electrodynamics contradicts ex-
perience because we do not observe advanced interac-
tions. Wheeler and Feynmanl proposed that the universe
acts to absorb the advanced interactions leaving a resi-
dual radiation reaction. In this article we study equa-
tions modeled on those of time symmetric electrodyna-
mics, namely difference~differential equations, in the
hope of determining whether the absorber theory and
various other theories which arose from it2-3 are indeed
justified.

A great deal is known about differential equations with
retarded arguments?.5-6 including the retarded equa-
tions of electrodynamics.”? For advanced interactions
many of the theorems do not hold. Generally speaking,
this is because unless one gives very special initial
data (for a system with advanced arguments) the solu-
tion soon ceases to exist. We illustrate this with an
example. Let

D2x(f) + w2x(t) = 3 ax(t — 1) + $Bx(t + 0) + Y(1), (1)

where D = d/dt;a, B, 7,0 are given constants, 7,0 > 0
and () is a given function. For g8 = 0,if x(¢) is given

on the interval 0 < ¢ = 7 then it can be obtained at all
subsequent times and becomes smoother on successive
intervals. For g # 0 (and o = 0) data must be given on
an interval of length 7+ o and as the equation is iterated
forward in time the solution becomes successively less
differentiable and singularities develop at ¢ = (integer
multiples of 7 and o) unless special initial conditions are
given.

These problems seem to have hampered study of TSE
(time symmetric electrodynamics). In this article we
take a different approach which makes equations such
as Eq. (1) far more tractable. The approach is simply
to give boundary values rather than initial values for the
solutions. Mathematically this will be seen to “neutral-
ize” the equations. Physical justification is more
serious and must be presented in the context of absorber
theory and the kind of results one can hope to get from
such a theory. Discussion of this point may be found in
Ref. 8. In Fig. 1 is an indication of why Eq. (1) may have
something to do with the problem of the absorber theory
of Wheeler and Feynman.

In this article we present a solution of the boundary
value problem for Eq. (1). First, however, we show how
the boundary value problem arises naturally for time
symmetric equations. Equation (1) with 7 = 0, a = 8,
Y = 0 can be derived by variation of the action?®

=3 [at[(Dx())2 — w2x()2 + ax(t + 7/2)x(t — 7/2)].
(2)

Let the { integration run from « to b and consider
6S = S[x + 6x] — §[x] where x(¢) is not yet restricted.
Then
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6= [,77/2 aox(®){~ D2x(D) — w2x()
+ 3 afx(t + 1) + x(t— 1)}

+ Dxbx |5 — (fa””/z + f° >dt6x(D2x + w2x)

b-1/2
o a+1/2 a b+1/2

2 fa_T/z He + ) ox(t)at + < fb_f/z x(t T)5x(t)£(i;-)
In order for 6S to vanish we can require the term in the
brackets in the first integral to vanish—this is the
difference-differential equation, Eq. (1). In addition, the
other terms in Eq. (3) must vanish. This can be accom-
plished by taking 6x(f) = 0fora— /2 <t=<a+ 7/2
and b— 7/2 <t = b + 7/2. But the statement that
8x(¢) = 0 for certain values of f(say f € I) simply means
that all x(f) in the class of functions relative to which
we wish S to be minimum must have the same value for
t € I. The variational problem is thus defined by giving
x(t) for ¢t € I. In the usual classical mechanics, [ just
consists of the initial and final times. For S of Eq. (2)

#\ #2 #1 #2
E
T
C
-
A
T
B
T
D
t
(a) (b)
X

FIG. 1. Reaction with the “universe” reduced to self interaction. Both
figures are space-time diagrams with ¢ vertical. In (a), motion of
particle #1 at A affects # 2 at C and B which in turn affect # 1 at E, A
and D. In (b) the particles are moving apart (on some cosmological
scale) and the advanced deviation (o) is greater than the retardation
(7). The inclusion of all absorbers into a single absorber is undoub-
tedly physically unreasonable,
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Iis{la—7/2,a+ 7/2]U[b—7/2,b + 7/2]. We shall
prove below by explicit construction that specification
of x(f) in these intervals does in fact provide adequate
boundary conditions for a unique solution of Eq. (1) for
almost all values of a,etc. Nevertheless, the formal
manipulations just given suggest the naturalness of the
boundary value problem.

The foregoing result could have been anticipated from
the iteration scheme for solution of retarded interactions
(sometimes call the “method of steps”). The initial con-
dition problem for Eg. (1)—to the extent that blowups in
the solution can be controlled—requires data on an inter-
val of length 27(0 = 7). All we have done is break this
interval into two pieces. The consequences of this are
that for some special parameter values there is ambig-
uity in the solution and also as we shall see, to make the

X

FIG. 2. Space-time diagram for initial conditions for two particles
interacting via time symmetric electrodynamics. ¢ = 1, so that AE,
EC,BD,and BF are at 45° to the axes. Trajectories for the particles
are given as some curves DF, AC and iteration forward in ¢ from the
points C and F (dotted lines) is done using the equations of motion.

D
£ #2
t
/6\ // \\
/
7 \ \ / N
/7 < N
% s \\
/ s N\ N
7 /s N N
/ / AN )
/
, // ,F //
/ s 7 /
/ / 7/ ’
EV / // 7
Y Ve
< / Vs
} < 7 s/
AN \ p 7/ e
N AN
N AN //
AN /\/ /
AN N\ 7
NN .
X
#| » 2
A
FIG. 3. Boundary conditions for time symmetric electrodynamics.

The data that are given are the indicated paths of particles #1 (AB
and CD) and # 2. This is sufficient, for, e.g., # 1 does not depart from
the rectangle BEC F (light velocity is unity) and its light cones either
intersect the boundary data for # 2 or the path of # 2 in its associated
rectangle. For additional space dimensions the rectangle becomes an
intersecting pair of cones.
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solution in the interval [a + 7 /2,5 — 7/2] far smoother
than that which is generated by the method of steps.

For two particles interacting via TSE the method of
steps suggests initial conditions on an interval defined
by a double light cone as illustrated in Fig. 2. Although
we have not established any existence proof there does
not seem to be any physical reason for failure of these
initial conditions. In fact, Huil? has done computer
studies iterating the equations of TSE forward in time.
The only problem he encountered is the tendency of
solutions to these equations to blow up at the discontinuity
that occurs at the end of what corresponds to intervals of
length 7 for this variable deviation problem, namely the
point where light cones out of C and F (in Fig. 2) meet
the curves produced by the iteration, and at analogous
points later on.

The boundary value problem for TSE can be similarly
defined, as can be seen in Fig. 3. For two particles each
must have its trajectory given in the corresponding light
cone of the other. Thus instead of insisting on trajec-
tories which go to infinity as many authors do, we have
a well-defined variational principle with a finite action.
We observe, however, that while Fig. 3 suggests neces-
sary data for the boundary value problem, it does not
guarantee the existence of a solution. Very likely to get
a smooth solution some conditions will have to be placed
on the data.

EXPLICIT SOLUTION OF THE BOUNDARY
VALUE PROBLEM

We now justify the heuristic remarks above concerning
existence of solutions for the boundary value problem by
actually constructing such a solution. Rather than turn-
ing to Eq. (1) immediately we consider first the symmet-
ric case 0 = 17, o = . Then

(D% + w2)x(t) = (a/2)}[x(t + 1) + x(t — 7) ] + (¥ 4)

is to hold in the interval 0 =< ¢ = T with boundary condi-
tion x(f) = ¢(¢f) for —7 <t =<0and T=<¢t =T+ 7. The
only condition on ¢ will be its integrability. For sim-
plicity we agsume T = N7 and take =1 (scaling of other
quantities with 7 can easily be recovered). Define

v =yt+n—1), x,O=xt+n—-1, n=1,...,N,
xo(t) = ¢(t—- 1), xN+]_(t) = (P(t + N)’
(£0],=%,00, n=1,...,N (5)

for 0 = ¢ < 1. Then Eq. (4) reads
(D2 + w2) x,(t) = (a/2}[x,,1 (1) + x,, ()] + ¢ ,(8) (6)

forrn=1,..., N. Letting R be the N X N raising opera-
tor R,. = 3,,,; and L its transpose the lowering
operafor, Eq. (6) takes the form

(D2 + w?2) &(t) = (a/2) (R + L) &(1) + f(2), (7
where
ot —1) Yy (8
0
= : +
0
¢(t + N) V(0
With the definition
Q2 = w?l — (a/2)R + L), (8)
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Eq. (7) becomes
D2 +Q2)t=f. (9

A particular solution of Eq. (9) can easily be obtained
using a Green's function; which of the various possible
Green's functions (retarded, advanced, etc.) is used is
irrelevant as the resulting particular solutions will
differ only by solution of the homogeneous equation.

Solution of Eq. (9) still need not provide a solution to
Eq. (4). Given a solution £(¢), the value of (£(¢)), at 1 =1
has no special relation to the value of (£()) .1 at = 0.
Cn the other hand, for the function x(f) we may demand
continuity or more stringent conditions at integer values
of £. We thus tailor the homogeneous solutions to Egq. (9)
so as to relate x,(1) to x,.,(0). The space of homo-
geneous solutions is 2 N-dimensional. Continuity at
t=20,1,..., N,namely

n+1(0) =X ( )’

involves N + 1 conditions. As the remaining N — 1 condi-
tions take

n=0,1,...,N, (10)

Dx,(1) =Dx,,(0), n=1,...,N—1 (11)

This is obviously an arbitrary albeit symmetric choice.
Equation (10) can be written

E(1) = Rg(0) + v
£(0) = Lg(1) +

where (#); = ¢(0), (v)y = ¢(N) with other components
of u and v zero. Equation (11) takes the form

LDg(1) = LRDE(0).

(12)

(13)

Equations (12) and (13) are 3N equations for 2N un-
knowns of which N equations are either redundant or
identically zero. The function £(¢) has the form

O =F@) + HY)y,

where

(14)

sin[Qt— s ]

5[, as o

is an N X 1 matrix, the “time symmetric” Green's func-
tion of Eq. (9) has been chosen,and H(¢) isan N X 2N
matrix satisfying

f(s)

(D2 + Q2)H = 0, (15)
H0)=(110), HQ1)=(0]1),

(each block in H is an N X N matrix) and y isa 2N x 1
matrix. Hy is thus a homogeneous solution of Eq. (9) and

by (15) H is

H() = (sinﬂ(l —~ 1) | sinQ,t), (16)
sinf2 sinQ2

Defining projections (P)U 6,0 t=1,j=1,...,N
(al XN matrlx) and (P')l] =0juy,;, 1= 1, ... N 1,
ji=1, ,N(@an (N —-1) X N matr1x) Eqs (12 and (13)
become

PE1D) — ¢(0) + PF(0) — PLF(1)

CRIL y=| v+ RFO) - FQ) =y

P'[LDH(1) P'[LRDF(0) — LDF(1)]

— LRDH(0)] )
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providing 2N equations for 2N unknowns. For computa-
tional purposes some further simplification can be made
if y and y are broken into two column vectors of N com-
ponents each

7’ X/
A7) (%)
<'J’ X

so that the first N of Eq. (17) allow a simple substitution
for 4’ in the second N equations, which now take the form

0 .0 1> L
<P’[LDH(1) — epr©)] )7 T X"

The simplicity of the first row of this matrix allows the
reduction of one more dimension and we introduce the
NX(N—I)matrlx(P”)J*G;,2_1 , N, j=1,

.., N —1,which when right multlplymg an N X N
matrix s1mp1y removes its last column.

Using the fact that

DH(t) =

= {— cos(1 — ¢) | cosQt),
S1

we obtain finally that the solution y involves inversion
of the (N — 1) X (N — 1) matrix

@ =P'L(1 — R cosQ)

1—-1)pP". (18)

sinQ2

We note that @ is an analytic function of 22 [except when
(sinQ /) vanishes] and its determinant is an analytic
function of w2 and «, except at those poles. For

= (r/2) 1 the determinant of @ is easily seen to be
different from zero and hence, using analytic continua-
tion this determinant can only be zero on a set of mea-
sure zero in the space of w? and «. This proves that
the solution of the boundary value problem for the
variational principle of Eq. (2) (if it exists) is unique
except for special values of o and w2, The values of &
and w2 for which £/sinQ has poles correspond to cases
where there are homogeneous solutions of Eq. (9) which
have period one and hence are of no use in adjusting
£(0) and £(1) so as to satisfy Eqs. (10) and (11). The
system in this case is overdetermined, as opposed to
the underdetermination that corresponds to det@ = 0.

Whether or not the solution to the differential equation
that we have just obtained is a solution for the varia-
tional problem, depends on how one handles derivatives
at the integer values of ¢ in the variational problem.

A great deal is known about the matrix 2, in particu-
lar all its eigenvalues and eigenfunctions. Unfortunately
we have not succeeded—despite all this information—in
inverting @, except on the computer.

Cne check of our formalism is to set ¢(¢) = es¢,
w(f) = 0. If one now demands that x(¢) = es¢ for
0 = ¢t = T also, then it is quite satisfying to see how
the maze of matrix equations succeeds in forcing the
condition s2 + w2 = & coshs (r = 1) on 5.4 [Compare
the effect of substituting x = est directly into Eq. (4)
with ¢ = 0].

It may be noted that in contrast to the method of steps
for advanced interactions the method described here
produces a solution which is an integral of the boundary
value function, and hence possesses one more derivative
on the interior of the intervals [j,7 + 1], j =0, ,

N — 1;at the points £ = 0 and N, x(¢) is continuous and at
the points t =1, N — 1 possesses a continuous
derivative.
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Cur method can be generalized to situations where the
retardation and advance are not equal. Physically this
is supposed to bear some relation to an expanding or
contracting universe, as illustrated in Fig. 1. The equa-
tion under consideration is

D2x(t) + w2x(f) = pax(t — 1) + 38x(t + 0) + w(b).

We assume the ratio of o to 7 to be rational, so that
without loss of generality o and v can be taken to be
integers. Appropriate data for the method of steps for
this equation are the values of x(f) on an interval of
length o + 7. As above we use two intervals, [— 7, 0]
and [N,N + o). The quantities x,(¢), £(2),¥,,,R,and L
are defined in exactly the same way as before but the
equations of motion now take a different form. Letting
x,(8) = ¢(t + n — 1), where ¢(¢) is the boundary value
function given on the intervals [— 7,0] and [N,N + 0]
wehave (0 < t=1,n=1, ..., N)

(D2 + w2) x,(f) = Fax, (&) + 5Bx,,,(t) + ¢, (8). (19)
Defining
¢1‘T wl

$o

) = . + , szwzl—%LT—g—R",

Pn-1

O n+o VN
we once again obtain the equation

D2 +Q2)tW)=f), 0=t =<1,

The conditions ensuring continuity of x(¢) at £ =0, ...,
N andof Dx(f) at £t =1..., N— 1 are now exactly the
same as before, namely Eqgs. (12) and (13). The approp-
riate homogeneous solution is therefore obtained as
above,

Having developed a method for solution of Eg. (1) we
mention that there is another problem to which this can
be applied. Diracl! obtains the radiation reaction term
from a difference of retarded and advanced self inter-
actions of an electron evaluated at the position of the
electron. This difference of interaction is presumably
a force felt by the electron, and the evaluation of the
effective force, which is essentially what Dirac has
done, requires solution of a differential equation with
deviating arguments. Dirac instead writes x(t — o) =
x(f) — %(t)o +--- . A proper check of Dirac's deviation
and this expansion might involve Eq. (1) with 7 = o,
p=—a, w=0and7T 2 0, a>%

DISCUSSION

Although the mathematical results presented here are
still some way from providing a test for the absorber
theory of Wheeler and Feynman, we would like to men-
tion just how such a test can be performed in the lan-
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guage of our paper. The function y(#) of Eq. (1) is taken
to be 8(¢ — ¢,,) for some ¢y, € (0, T). The solution x(¢)
then exhibits the effect of the perturbation y and in
general x is disturbed both before and after ¢, If for
some reason the disturbance of x due to y is restricted
to ¢ = ¢, (for some range of ¢;) then causal behavior for
the system is established and the advanced interaction
could be said to have been eliminated, Then the strength
of the retarded interaction should be checked for en-
hancement (as in the absorber theory). A possible ori-
gin of the suppression of the advanced interaction could
be differences in the values of o0 and 7, @ and 8 due to
expansion of the universe as suggested by Fig. 1.

Some preliminary numerical work has in fact been
done along the lines described above. However, we feel
that to obtain the desired absorption effect it will be
necessary to introduce many individually acting absorb-
ers, rather than replacing them all by a single effective
interaction.

We have thus solved a boundary value problem for a
linear system with advanced and retarded interactions.
The author is aware of another problem in the theory
of differential equations with deviating arguments where
it has been found useful to use data on two intervals,
namely in Titchmarsh's computationl2 of the coefficients
in the Fourier type expansion [x(f) ~ 2J a,e*f s a
solution of, e.g., s2 + w2 = & coshrs for Eq. (4)}. In that
case, however, although use is made of data on two inter-
vals, in fact each of these intervals alone would fix a
solution. Thus the method of Titchmarsh implicitly
assumes that the function in one of these intervals is
the solution for the data in the other. Therefore this
method is not an operational way for getting a solution
from boundary values.

In Refs. 13 and 14 existence theorems are to be found
for various boundary value problems for differential
equations with deviating arguments. While no explicit
solutions are given, these authors do not limit them-
selves to linear systems.
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The solution of the steady, one-speed neutron transport equation with isotropic scattering and small
mean free path is obtained. The solution is asymptotic with respect to a small parameter ¢, defined
as the mean free path in terms of a unit length of the same order of magnitude as a typical
dimension of the domain. The solution, the leading two terms of which are given, consists of a
boundary layer solution plus an interior solution. The boundary layer solution decays exponentially
with distance from the boundary, the decay rate being proportional to €', and it shows the effects
of boundary curvature and variations in the incoming flux along the boundary. The interior solution
is a multiple of the source for subcritical domains, and depends on a diffusion equation for near
critical domains. The boundary condition for the diffusion equation and an asymptotic criticality

condition are derived.

1. INTRODUCTION

In a recent paper, Larsen and Keller! obtained solu-
tions of general energy-dependent and one-speed neut-
ron transport problems. The domains in these problems
are assumed to be large compared to the mean free
path of a neutron. The solutions are asymptotic with
respect to a small parameter €, which is a typical mean
free path in terms of a unit length of the same order of
magnitude as a typical dimension of the domain. The
solutions consist of the sum of an interior solution
which is either a multiple of the source or satisfies a
diffusion equation, a boundary layer solution which de-
cays exponentially with distance from the boundary,
and an initial layer solution which decays exponentially
with time from the initial time. The decay rates for
the boundary and initial layer solutions are proportional
to €71,

In this paper we solve the transport problem consi-
dered in Ref. 1 for the special case of time independence
and one-speed, isotropic scattering. For this case, we
use a representation derived by Gibbs2 for the neutron
density to obtain more accurate results than those
obtained in Ref. 1. We show that the solution obtained
here is, to lowest order, asymptotically equivalent to
that obtained in Ref. 1, and we explain why the new solu-
tion is more accurate. We also derive a boundary con-
dition for the diffusion equation and obtain an explicit
formula for the critical value of c¢. This critical value
is shown to be equivalent to that obtained from a formu-
la which uses an “extrapolated end point.”

An outline of this paper follows. In Sec. 2 we state
certain preliminary results and then give the neutron
density to leading order in Theorems 1 and 2. In Sec. 3
we give the angular density to leading order. In Sec. 4
we obtain a criticality condition, and in Secs. 5 and 6 we
prove Theorems 1 and 2. In Appendix A we outline
Gibbs' method and in Appendix B we give the O(¢) cor-
rection terms to the neutron density.

2. THE ASYMPTOTIC REPRESENTATION OF o

Let D be an open convex domain with a smooth boun-
dary. We assume that a steady, one-speed, isotropic
JLeutron transport process occurs within D. Then the
boundary value problem governing the angular distribu-
tion Y(r, Q) is:

QVY(r,2) + (1/e)Y(r,Q) = (c/4ne) [ Y(xr,R)dQ’" + qy(r),

reD, (2.1)
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4/(1'0,9) = lpo(rO;Q)’ (2- 2)

ro€ oD, Q-+n{ry<o.

In (2. 1), € is the mean free path in terms of a unit
length of the same order of magnitude as a typical
dimension of D. In (2. 2}, n(r,) is the unit outer normal

and ¥ is prescribed.

The boundary value problem (2. 1), (2. 2) can be re-
written as an integral equation for the neutron density,
p(r) = (4n)1 [ y(r,9’)dQ’. To do this, we define d(r,R)
for r € D to be the distance from r to 6D in the direction
— Q. Thenr —d(r,Q)& € aD and the line r — 8 lies in
D for 0 = ¢ < d(r,R). This line is a characteristic curve
of (2. 1),along which we integrate (2. 1) to obtain

Y(r, Q) = Yo[r —dr,2)Q,Q]e 4, 0)e
~t/
+ [enn f—g— [ep(r — Q) + eqyr — tR)]dt. (2. 3)
This equation defines ¥ in terms of p. To obtain the in-
tegral equation for p,we integrate (2. 3) over § and get

a(r,q) et

p(r)qu(r)*'ﬁ f,n,.,l £=0 €

X [cp(r — t2) + eqy(r — tR)]dtaQ, (2.4)

where ¢, is defined by
q,(r) =(1/4m) f Yolr — d(r,Q)Q,Q]e .2V edq,
(2. 5)

The solution p of (2.4) can be represented in the form

Q=1

p(r) = qy(r) + [ glc, [Qoler,r) + Q,(ev,r)]dv

+ f H(ev,r)dv. (2.86)
This is shown in Appendix A by Gibbs' procedure. In
(2. 6) we have used the notation

S, rvyav = f;o r(v)dv + h(vy). 2.7
Here v, with argr, = 0 or 7/2, is the zero of the func-
tion A(z) defined by
cz 1 ds cz <z + 1)

= n{——).

Mz)=1— ==
) 2 "1 z—35 2

(2. 8)

The function g(c, v) is defined by (A7) in Appendix A.
The functions @ ; are particular solutions of the equation

(- & + 1/e2v2) @, (ev,1) = (ci/e ) qy(x), §=0,1,

(2.9)
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and H is a solution of the equation

(— A+ 1/€2p2) H(ev,r) = 0. (2.10)

Thus p is given by (2. 6) once @y, @, and H are found.

We have now converted the original boundary value
problem for the integro-differential equation (2. 1)
into the problem of solving the differential equations
(2. 9) and (2. 10), but the boundary values to go with
these equations are not yet known. These boundary
values must be correctly determined to ensure that
(2. 6) actually solves (2. 4). Thus, we introduce (2. 6)
into (2. 4) to obtain an equation for the determination
of the boundary values. In this equation, any particular
solutions of (2. 9) can be chosen for @, and @,, as is
shown in Appendix A, and then only the boundary values
of H need be found. This equation for the boundary
values of H has been solved exactly only for the half-
space. To solve it for other domains, we shall consider
€ to be small and solve the equations asymptotically.

As a first step we shall assume that the boundary
value of H are of the form
o0
H(ev,ro) ~ 2, €"B,(v,1y),
n=0
Then formal asymptotic solutions of (2. 10) and (2. 11)
can be found by seeking H of the form3
H(ev,x) ~ e=S(x)cv 37
n=0
We introduce this ansatz into (2. 10) and equate the
coefficients of different powers of € to obtain

r, € oD. (2.11)

e*H, (v,r).

(2.12)

(V)2 =1,
2VH, VS + H, AS = vH,_,,

(2.13)
n=0, (2. 14)

where H_; = 0. To make H bounded in D and to satisfy
the boundary conditions, we require

=0 €
S(ro) 5 To aD, (2' 15)
Sr) >0, r € D,
and
H,(v,ry) = B,(v,ry), 1Ty€ 3D, (2. 16)

The solution S(r) of the boundary value problem (2. 13),
(2. 15) is easily constructed. Let r be near 9D. Then
there is a unique point r, = ro(r) € dD which is nearest
r,and

VS(r) = —n(ry),

2.17
s) 2.17)

= |r—rqyl.
S(r) is thus the distance from r to ¢D.

Now we can solve the system (2. 14), (2. 16) recur-
sively. To describe the solutions H,,we let r and r,
be as above. We consider a Cartesian xyz-coordinate
system in which r, = (0,0,0) and r = (0,0, t). We
choose the x and y directions so that the equation for
9D near r, can be expressed in the form

z=15ax2+ ipy2 4+, (2. 18)

Then the functions H, are defined recursively by

. %f‘ {(1 — as)(1 — Bs)]l/2
0 (1 — at)(1 —Bt)

(2.19)

B, (v,ry)
[(1— an(l — paJr/2
*AH, {[v,(0,0,s)]ds.

H/(v,r) =
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In addition, we set #» = 0 in (2. 19) and (2. 14) to obtain
the useful formula

AS(r) = [— (o + B) + 208t2] /(1 — at)(1 — B). (2. 20)
For ¢ near t* = min[a™, §71], the solutions H, become
unbounded and the expansion (2.14) must be modified. 4
However, if € is small enough, H will be exponentially
small for ¢ near t* — & and so, with exponentially small
error,we can set H = 0 for ¢ > * — 6. In this paper, we
shall assume that this is the case. Additional difficulties
occur near corners or vertices of oD, if there are any.
We shall not consider them here.

In the preceding analysis of Egs. (2. 10), we have
assumed that €v is small. This assumption is not valid
for v = v, if ¢ depends on € and is close to 1. We find
from an analysis of the equation A(v,) = 0 that if ¢ de-
pends upon € in the manner

c=cle)=1+ 25 c,e,
n=2

then €v is of the form

1 o0
+ 27 b,em.
Af— 362 n=1

For such a case, €v is not small and we must modify
statements made above about (2. 10). The first step in
this modification is to choose c(€). We do this by re-
quiring €y, to be a constant for all €. This choice of
c(€) makes equation (2. 10) independent of €, which elimi-
nates the necessity to expand H(evg,r) in a series in e.

€Vy =

Therefore, we define the constant y by

€vg=1/y. (2.21)
By assumption y = O(1), and from (2. 8) we obtain
c = 2ey [ln <1—31>}1 ~1—- 2724 oer). (2. 22)
1— ey 3
Equation (2. 10) now has the form
a4+ y)H{1/y,r)=0. (2. 23)

We shall express many of our results in terms of y. In
real problems, ¢ and € are known and then y can be de-
termined by inverting (2. 22).

We have shown that the form of the solution of (2. 10)
depends upon whether v is real and O(1), or evy=0(1).
We shall call the first case “subcritical.” Here
0< ¢< 1and c is not near 1. We shall call the second
case ‘“near critical”. Here ¢ and v, are defined in
terms of € and y by (2. 21) and (2. 22), and for this case
we shall only consider small interior sources and show
this by replacing q, by €gq, in all equations.

This concludes our discussion of the solutions of
(2. 10) in the subcritical and near critical cases. We
can now give the asymptotic expansions of the right
side of (2. 6), and we shall prove the result later in
Sec. 5.

Theovem 1: The neutron density p(r) possesses an
asymptotic expansion of the form

p(r) ~ Z_)O enp (r, €).

In the subcritical case, the leading term p( is given by

polr,€) =3 fu e Ssw/ev Ay(v,r)dy, (2. 25)

(2. 24)
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where A, satisfies (2. 14) and (2. 19) with » = 0. In the
near critical case,

e 5w/ev A (v, x)dv + 3 Ag(vg, T)
+3Qy(1/y,r). (2.26)

For 0 < v < 1, Ay(v,r) satisfies (2. 14) and (2 19) with

n=0 A (VO,I') satisfies (2. 23),and @,(1/y,r) is the

solution of (2.9) with v = v = 1/ €y, q, replaced by
€qq,and satisfying @(1/y,ry) = 0 for r, € 9D.

1
po(r7 €) = % fV:O

To complete the representation of p,, we must deter-
mine boundary values for the functions A,. We shall do
this in Sec. 6 by introducing (2. 25) and (2. 26) into (2. 4)
and then performing an asymptotic analysis of the result-
ing equations. However, we shall state the results here.

Theorvem 2: Let the representations for pg in
Theorem 1 hold. Then the boundary values of A (v, r)
for the subcritical and near critical cases are given by

Y e, w)d

W u=0 ols, To)du,

Ayl rg) =

ro€oD. (2.27)
In this equation, ¢ ,(u) are the one-speed, isotropic Case
eigenfunctions, and W(u) and N(v) are the hali-range
weight factor and normalization function respectively.®
The function J,, is defined as follows. We let ry € dD
and we consider the Cartesian system with origin at r
described above equation (2. 18). We define angular co-
ordinates 6,7 so that
Q=(Q,,2,,2,) = (cosn sing, sinn sing, coss).

Then with i, the incoming flux as in (2. 2) and p = cos®,
Joli, Tg) is defined by

2
Jolcosd,ry) = (1/27) f

n=

m
0 Voltg,R)dn, 0=6<a/2

(2. 28)

Theorems 1 and 2 then completely define p,. We have
determined p,, and we describe it in Appendix B. The
calculations to obtain p; are very lengthy but are based
on the same procedure as that to obtain p, Therefore,
we shall only show the derivation of p,, and we do this
in Sec. 5 and 6.

3. THE ASYMPTOTIC REPRESENTATION OF y

Here we shall insert the representations (2. 25)—(2. 27)
into (2. 3) to obtain expansions for the angular density .
To do this, we shall refer to results proved in Secs. 5
and 6.

We first consider the subcritical case. We insert
(2. 25) into (2. 3) and use Eq. (6. 5) to obtain

W, Q) = Yolry, @) e Sren + &

f Ayly, r)
x (e‘s(r)/ﬁ" - ebs(’)/‘“)dv + O(e),
where r, is the point on 3D closest to r and u=QVS(r) =
— 8+n(ry). The function )’ is defined by (5. 8). We re-

arrange this equation and use (6. 10) and (2. 28) to obtain,
for r near oD,

‘P(r,n) =<W()(r0; T el IZ" O(rO) dn’)ez)s(l‘)/qj
+ [ AO(V,r) ¢,,(u) e S(r)/ev gy + Oe).  (3.1)

In the near-critical case, we obtain near oD
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Y, Q) = (Porg, @) — = [2" wolr Q)dn')g—s(r)/eu
s o\t o 27 Jy=0 O\ O 0

+3Qo(1/y,1) + [1 A,
xdy + Aylvg,T) qbuu(u) + O(e).

l‘) ¢u(“) eS8 {r)ev
(3. 2)

Therefore, to lowest order, the angular density ¥ near

the boundary is the solution of a local half-space prob-
lem with half-range coefficients A, which depend upon
r. The dependence upon r is due to focusing caused by
the curvature of the boundary.

In the deep interior of D we obtain from Appendix B,
for the subcritical case,

Y(r, Q) = eqo(r)/(1 — c) + O(e2). 8.3
For the near critical case, we get
Y(r, ) = 3 Aglvg, 1) + 3Qy(1/ v, ) + Ofe). (3. 4)

In the subcritical and near critical cases, the “contin-
uous” modes A,(v,r) for 0 < v < 1 form a boundary
layer which decays exponentially with distance from
oD. For the subcritical case, the mode Ay(vg,7) forms
the remaining part of the boundary layer. As c in-
creases, the decay rate of this mode becomes less and
in the limit as ¢ — 1 + O(e2) in the near critical case,
Ag(vg, r) satisfies the diffusion equation (2. 23). The
boundary condition appropriate to this equation is given
by (2. 27). One can see that this condition is not the
usual “Marshak’” boundary condition (Ref. 5, p. 155)
which in our notation has the form

1
Ao(Vo,ro) = fu=0 MJo(li, ro)dli’ (3.5)

where J; is defined by (2. 28).

An approximate form of Egs. (3. 1)-(3. 4) was derived
by Larsen and Keller! using a different method. To ob-
tain their equations, replace Ay(v,r) by Ay(v, 1) for
0<v<1landv=vy,inEq. (3.1),and for 0<v<1in
(3. 2). Also,in (3. 2), replace ¢ = c(e) defined in (2. 22)
by ¢ =1 — 5 €292, These changes are at worst O(e),
and so equations (3. 1)-(3. 4) are, to lowest order, equiva-
lent to those given in Ref. 1.

The solutions given here are more accurate, however,
because they show the effects of the boundary curvature
and in the near critical case they use the exact value of
v, defined by (2. 27), rather than by the truncated
c=1—4 €242, Also, the calculation of the O(¢) correc-
tion term in Appendix B leads to a more accurate criti-
cality condition than that given in Ref. 1. We shall for-
mulate this criticality condition next.

4. CRITICAL PROBLEMS

If a positive solution of (2. 4) exists with g; = ¢4, =0,
then we say that D is “critical.” In this case we expect
D to be near critical. Thus by (2. 6), setting g, = @, =
@, = 0 and replacing the symbol H by A, we obtain

p(r) = ful;o A(ev,r)dv + A(1/y,r), (4. 1)
where
A(ev,r) = e S(rV/ev [A (v, 1) + €A (v,T)]+ O(e2) (4. 2)
and

A(l/y,r) = Aylvg, 1) + €A (vg, ) + O(e?). 4. 3)
Here A(1/y,r) and A (vy, r) satisfy (2. 23), A(ev,r) for

0 < » < 1 satisfies (2 10),and A, (v,r) for 0< v < 1
satisfy (2. 14). By equation (2. 27) of Theorem 2,
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Aglv,rg) =0, rye oD, (4. 4)

and, by Eq. (B4) of Appendix B,
v 1
Al(V, 1'0) = W f“:O W(N)¢.,(IJ)HT(1'0) dp
=—n(rq) VAy(vg,ro) Uv), (4.5)
where
=1 v 1
W =4 Lo Jo W) ¢, (Wpdu. (4. 6)

Introducing these into (4. 3), we obtain

AQl/y,rg) = €[~ n(ry) *VAy(vg,ro) i{vg)] + O(e?)
=— EZ(Vo)n(I,'o) ‘VA(]-/')’,ro) + O(e2).

Therefore, the asymptotic boundary condition approp-
riate to A(1/y,r) is

A(1/y,ry) + ellvginiry) *VA(Q/y,ry) =0, r,€aD.
4.7

Thus A(1/vy,r) is a solution of Eq. (2. 23) with the homo-

geneous boundary condition (4. 7). To describe such a

solution, we consider the eigenvalue problem
(—A—2)¢(r) =0,
Plry) + €llvgn (ry) *Vo(ry) =0,

rebD
4. 8)
ry € eD.

The eigenvalues of (4. 8) are positive and denumerable
and can be arranged in an increasing sequence:
0 < xo< Aq°+-. Then a nontrivial solution of (2. 23),
(4. 7) exists iff y2 = — x,,. By (2. 22), the corresponding
critical values of ¢ are

c,=¢€Vxr,/arctaneVA, = 1 + y€2x, + O(e%). (4.9)
The minimum such value is c,, and the corresponding
eigenfunction of (4. 8) is everywhere positive in D.
Therefore, we expect the critical value of ¢ to be given
asymptotically by

Copit = €Vx,/arctane Vi, (4. 10)

where A is the minimum eigenvalue of (4. 8).

An equivalent criticality condition which employs the
so-called “extrapolated endpoint” can be derived. Since

1 oW e, Wedp _ Jo W) p dp
2 oW el Waw [ Wy

and since W(y) is of one sign,then I(vy) > 0. Let D’ be
the domain whose boundary points rj are “extrapolated”
from the boundary points ry of Dby rg =1y +
€l(vy)n(ry). Then D’ properly contains D, and we con-
sider the eigenvalue problem

I(V()) = + O(¢) )

(—A—x)¢x’')=0, r €D’
(4.11)

o(rp) =0,

If ¢ is a solution of (4. 11), then

Ty € 9D,

0 = ¢[ry + €l(vg) nlry)]
= ¢(ry) + €llvg) nlry) *Volry) + 0(e2),

and so ¢ asymptotically satisfies (4. 8). Therefore, the
eigenvalue problems (4. 8), (4. 11) are asymptotically
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equivalent. The eigenvalues of (4. 11) are positive and
can be arranged in an increasing sequence: 0<{ g < Af---,
and the corresponding critical values of ¢ are given by
(4. 9) with », replaced by A/, The minimum such value

is ¢y, and the corresponding eigenfunction of (4. 11) is
positive, Thus we obtain the “extrapolated” criticality
condition

€l.ir = €\ /arctane Xy,

crit ™ (4. 12)
where 1p is the minimum eigenvalue of (4. 11). We ex-
pect 15 = Ay, and therefore the conditions (4. 10) and

(4. 12) should be asymptotically equivalent.

Finally, if D is critical, then p(r) is defined up to
O(e2) by (4. 1). In this equation, A(1/y,r) is a positive
solution of either of the eigenvalue problems (4. 8) or
(4. 11) and A(ev,r) is given by (4.2). The boundary con-
ditions for A, (v,r) are then given by (4. 4) and (4. 5),
where we replace Ay(v,,T) by A(1/y,r) in the right side
of (4. 5).

5. PROOF OF THEOREM 1

In this section we shall expand each of the terms in
(2. 6) asymptotically for € < 1 and thereby obtain the
asymptotic representations (2. 25)—(2. 26) of p. For
clarity, we shall perform the work on each term as a
separate lemma. We begin with ¢, (r), defined in (2. 5).

Lemma 1:

1
a,(0) =3 [, Jlen,r)dp + O(e), (5.1)
where, for 0 < u< 1, J(epu,r) satisfies Eq. (2. 10) with v
replaced by p. The boundary values of J are

Jeu,rq) = J oy, Ty, (5. 2)

where J, is defined by equation (2, 28).

Proof: The proof will consist in asymptotically ex-
panding the left and right sides of Eq, (5. 1) and observ-
ing that,to O(e), the two sides are equal. We first con-
sider ¢, (r), defined by (2. 5). We let r be near 9D and
ro =ry(r) € 9D be the point nearest r. Then the main
contribution to the integral in (2. 5) comes from the
direction @ = — n(ry). Therefore we shall expand d(r, )
and then the integrand in (2. 5) asymptotically about
Q=— n(ro). To do this, we consider the Cartesian sys-
tem described above Eq. (2. 18) and the angular coordi-
nates 8,7 described above (2. 28). Then the direction
@ = — n(ry) corresponds to § = 0.

For & ® — n(rg), let (x,v, 2) be the point on 4D inter-
secting the line r — s@ with s> 0. Then
(x,y, Z) =r— d(l‘,ﬂ)ﬂ

= (0,0, S(r)) — d(r,R)(cosn sind, sinn sind, coss),

(5. 3)
so

x/y = (cosn)/(sinn).

Thus if we define » = (x2 + y2)1/2, then x = ¥ cosy and
y =7 sin). Using this in (2. 18), we obtain

z = 3(a cos2n + B sin2n)¥2 + -+ = fo(ry,mr2+ O@3).

5.4
Also, (5. 3) becomes (5.4)

z = S(r) — d(r,Q) cosd
¥ = sind d(r,Q)
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Eliminating  and z from these last three equations
yields

d(r,) cosd = S(r) — fo(ry,n) sin26 d2(r,Q) + O(r3),

This leads to the expansion

S(r) sin29

d(r,Q = == — f,(ry,n) =——— S2(r) + -+, (5.5)
x, cosd T2Fos cos30
which is valid for 8 ~ 0, or for & = — n(r).
Now we introduce (5. 5) into (5. 3) to obtain
r—dr,Q2)Q=—S({)tanfQy, + -+,
where @, = (cosn, sin7n, 0).
Then, for 6 = 0,
Yolr —d(r,Q)Q,8] = Yolry, Q) — S(r)(tans)Q,
Vg lreg,R) +- (5. 6)

We also obtain from (5. 5)
e-d &, QY e
= eBS(r)/(e cose)<1 +

2 in26
$3(z) falrg,m) ﬂ‘és—e>+ 0(e2).
€ co .7
In this equation, we have introduced the function

et,
o
€h =

0,

This makes (5. 7) valid for all angles.

Now we introduce (5. 6) and (5. 7) into (2. 5) and inte-
grate to obtain

t <0
. (5. 8)
t >0

a1(0) = 3 [ Jolu,m) eSO /e du + 0(e), (5.9)

where J, is defined by (2. 28) and (2. 14) with » = 0.

Next we consider the right side of (5.1). We showed
in Sec. 2 that the solutions J(ey, r) of (2. 10) with boun-
dary conditions (5. 2) can be expanded in the form

J(ep,r) = e 5@ en J(u,r) + O(€),
where J; satisfies (2. 14) with » = 0, with boundary
values given by (2. 28). Integrating this equation over p
and comparing the result to (5. 9) verifies equation (5. 1).
This proves the lemma. QED

Lemma 2: There exist particular solutions @, of
(2. 9) such that

f,, gle,v) Q1(€V,l‘)d1/

_1 1 M) —1\g dy + 0
9 u=0<)\2(u) + (mep /2)2 ) (e, ) i ((Ef.)iO)

where J(eu, r) is defined in Lemma 1. This equation is
valid for all values of c.

Proof: From the representation (5. 1), we obtain the
following solution of (2. 9):

1 v2p2

R J(ep,r)dp + O(e).

_c
Q(ev,r) = ; fu (5. 11)

For 0 < v < 1, the integral is treated as a principal value.
We multiply by g(c, v) and “integrate” over v to obtain
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J gle,1) @ (ev, ) av

1 _vZp? d),] Ydu+ O(e).
5 fu:0<c f,, R glc,v)dv)d(ep,r)dp o 162)

The inner integral is evaluated in (A12) in Appendix A,
and its value is such that (5. 10) and (5. 12) agree. This
completes the proof of the lemma. QED

Lemma 3: In the subcritical case,a solution @, of
(2. 9) exists such that

fyg(c, v) Qolev, r)dv = €qy(r)/(1 — ¢) + O(€3). (5. 13)

In the near critical case, every O(1) solution @, of (2. 9)
(with g, replaced by €q,) satisfies

[, glc,v) Qqlev, ) dv = 3Q((1/y,7) + O€2).  (5.14)

Proof: We first consider the suberitical case. An
asymptotic solution @, of (2. 9), valid throughout D, is

Qolev,r) = ev2qy(r) + €30t Agylr) +---.
Therefore,
fu gle, v) Qylev, r)dv = €q(r) fu v2g(c, v)dv + O(e3).

(5. 15)

The integral on the right side is evaluated in Eq. (A13)
of Appendix A, and we obtain (5. 13).

In the near critical case,we replace g, by €q, in all
relevant equations. For 0< v < 1, we take Q(ev,r) to
be defined by (5. 15). Then these functions are 0(¢2).

Let @,(1/y,r) be any solution of (2. 9) with v = vy = 1/¢y.
Then

fy glc, V) Qplev,r)dv = glc, vy) Qy(1/y, 1) + O(e2),

By (A14) of Appendix A, g{c, vy) = 3 + O(€2). This veri-
fies (5. 14) and completes the proof of the lemma, QED

The above lemmas can now be combined to prove
Theorem 1.

Proof of Theorem 1: For the subcritical case, we
combine equations (2. 6), (2. 12), and the above lemmas
to obtain

pr) =1 fy A(ev,t)dv + O(e), (5. 16)
where A(ev,r) is a linear combination of H(ev, r) and
J(ev,r), and so A satisfies Eq. (2. 10). We substitute the
expansions (2. 12)~(2. 14) for A into (5. 16) to obtain
(2. 25). Equation (2. 26) is obtained in the same way,
where for notational convenience we have replaced
A(1/y,r) in this equation by A(vg, r). This completes
the proof of the theorem. QED

6. PROOF OF THEOREM 2

In this section we shall insert the representations for
p in Theorem 1 into Eq. (2. 4) to obtain equations for the
boundary values of the function A (v, r). Equation (2. 4)
can be written in the form

(I—cL)p(r) = q,(r) + €Lqy(r), (6.1)
where L is the operator
ar,a) et/
(Lw)(r) = 1 J S/ €75 @ — 1) dt d9.
47 Jiei=1 Jr=0 (6. 2)

From Theorem 1 we see that p and ¢, can be repre-
sented in terms of two classes of functions w for which
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Lw has different asymptotic expansions. These classes
w can be characterized by:

(i) w(r) is O(1) and has O(1) derivatives.
(ii) w(r) = e S&¥ev p(r), where h(r) satisfies (i).

We shall obtain the asymptotic expansion of Lw for
these classes of functions. The analysis will be sepa-
rated into two lemmas.

Lemma 4: Let w(r) be O(1) and have O(1) deriva-
tives. Then

(Lw)(r) = w(r) — ‘—"% fulo e~ S@/eu dy + O(e). (6. 3)

Proof: Using (5.5),(5.7), w(r — ) = w(r) —
tQ *Vow(r) + ---,and setting p = cosf, we obtain

fod(r, Q)

We integrate this equation over  to obtain (6. 3). This
completes the proof of the lemma. QED

e-t/e

w(r — tQ)dt = w(r)[1 — eSTer] + O(e).

Lemma 5: Let h(r) be 0(1) and have O(1) deriva-
tives. Also,let v > 0 be an O(1) constant. Then

L(e-s(r)/eu h(r)) — h(r) <e-s(l‘)/ell _l_/__ fl du
271 y—yp

v 1 e~S(r)/ep ﬂ_> + O(e). (6. 4)
0] V— U

2

Proof: We proceed as in the previous lemma., We
set p = *VS(r) to obtain S(r — £2) = S(r) — tp + O(t2)
and then, using (5. 7), we get

f:(r,n) (e—t/e/e) e~ S(r-tQ)/ ev h(r _ tﬂ)dt
= h(r)e™S (r)ev fod(r'“) et/ (1-1/v) gt + O(e)

- ]’l(l‘) [IJ/(V _ “)] [e—S(r)/eu _ ez)S(r)/sp] + 0(6)
(6. 5)
We integrate this equation over @ to obtain (6. 4). This
completes the proof of the lemma. QED

Now we shall use these lemmas to obtain expansions
for Lgq and (I— cL)p.

First, we use Eq. (5. 9) as the expansion for ¢; and we
use Lemma 4 to obtain an expansion for €Lg, Adding
these, we obtain

q,(r) + €Lgy(r) = 2 fol e SV en Jo(u, r)dp + Ofe). 6.6
This is the expansion we shall use for the right side of
(6. 1).

Next we shall expand (I — ¢L) p for the subcritical
case. From Lemma 5 we obtain, after “integrating”
over v and using (2. 25),

(I —cL)p(r) =z fuio (f, Aglr,r) ¢, () dv)e SV en

X dp + O(e), (6.7)
where ¢, (p) are the Case eigenfunctions,
¢, =rx()o(v—p) +3cv(v—pt (6.8)

It remains to compute the expansion of (I — ¢L)p for the
near critical case. Since in this case ¢ = 1 + 0(€2) and
2= ¢, (1) + O(e), then we obtain, from Lemma 4 and

Qo(l/'ro, ro) = 0,
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(I —clL) [%Ao(Voyr) + 3Q0(1/’}’7r]
=3 Aolvo, ™) [ ¢, We S eudu+ 0e). (6.9)

Now we combine Eqgs. (2. 26), (6. 7) for 0 < v < 1 only,
and (6. 9) to obtain exactly Eq. (6. 7). Therefore, to lead-
ing order, the boundary conditions for the suberitical
and near critical cases will have the same form. For
both cases, then, we combine (6. 1), (6. 6),and (6. 7) to
obtain

f,, AQ(V, 1'0) ¢V(P)dV = Jo(ﬂ, ro);

0< u< 1, ry€ D

(6.10)

The solution A 4(v, 1) of this equation is expressed in
terms of the half-range formulas in Eq. (2. 27). The
boundary values of A, have thus been determined and
Theorem 2 has been proved.
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APPENDIX A

In this appendix we shall outline the method used by
Gibbs2 to obtain the representation (2. 6). We also
shall derive certain formulas needed in Secs. 5 and 6.

First we rewrite Eq. (2. 4) by making a change of
variables to Cartesian coordinates. By letting r’'=r —
tQ anddt d = |r — r’|2dr’, (2. 4) becomes

1 -lr-r'i/e , ,
pr) = q,(r) + = [ S [cplr') + €qo(r’)]dr’ (A1)
€ "D 4qlr —r’|2
Now we use the fact that

e lr-rl/e (AZ)
4n|lr—1'|2

_1 1 ! e i
= Joo e —rhen e,
where G satisfies

Glr—r',ep) =etrr’lVen /4y |r — 1’|

X (—A+1/e2u2)G(xr —r', ep) = 6(r — ).

We introduce (A2) into (A1) and invert the order of in-
tegrations to obtain

p) = 0@ + [ Pl % (43)

where F is defined by
F(r,p) =¢€2 fD G(r — 1/, ep) [cp(r’) + €qy(r’)]dr.

To obtain an equation for F, we operate on the above
equation by — A + (ep)"2 and use (A3). The result is
— AF(r,p) + €2 K2F(r,p) = €lgyr) + ce2q(r), (A4)
where the operator K 2 acts only on the p variable,and
for ¢ = 1 the operator K*2 is found to be

(K20)w = u2(9) +— [ #ls)ds).

T (A5)
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To obtain the general solution of (A4), we must derive
the resolution of the identity of K2, We find that for any
function () which is Hélder continuous on (0, 1), one
can write

rp) = [ AW f(v,wdv, 0<p<1, (AS6)

where
Flo,p) = p2a(w) 0(v — ) + cv2p2/(v2 — p2),
Ale,v)=gle, ) [} [F (v, w/p2] bl dp,

and

" v2A2(v) + (zmev)2]L, 0< v< 1,
gle,v) ={ (A7)
(2/cvy) [c/(WE — 1) — 1/v3]1,

V= VO.
The eigenfunctions f(v, y1) are normalized to satisfy
1= 1 S, ) du.
o p2

We remark that the operator in (A5) has been called K2
because for % given by (A6), one has

E2n)@) = [ v2AW)f (v, 1) dv.

Now we obtain the solution of (A4) by writing F in the
form

Fe,w) = [ L,1)f(v,pd.

Introducing this into (A4) and using 1 = ju gle,vflv, )
dv,we obtain

(A8)

(A9)

L(v,t) = [@¢lev,T) + Q,(ev,T)] g(c, v) + H(ev,T), (A10)

where @, @,,and H satisfy (2. 9) and (2. 10). Now we
combine (A10), (A9}, (A3), and (A8) to obtain the repre-
sentation (2. 6).

Using the resolution of the identity of K2, we can de-
rive certain formulas used in Secs. 5 and 6.

For the function ¢(u) =1 = fu gle,v)f(v,p)dv, we
compute, using (A5),
p2 1

——-——22 e m = (z2] — K2)1 g2 j; gle, v) fv, W) dv

=/ ;;’f_z? gle, vy flv,u)dv.

v

We multiply this equation by cz2u°2, integrate over p
from 0 to 1, and use (A8) to obtain

¢/

v o z2 12

2,2
EEVE (e, v)dv = - — 1. (A11)
A(z)
Now for 0 < p< 1, we let z > p + 70 and use the Plemelj

formulas to obtain

¢, ”—‘2‘%—2;2- g(c, v)dv=k~2-(;)—"fi‘()ﬂ7/2)2—1. (A12)
Also,we let z = « in (All) and use Mw) =1 — ¢ to
obtain
fu v2g(c,v)dv=1/(1 —¢). (A13)
Finally, we use (2. 21) and (2. 22) in (A7) to obtain
glc,vo) = 3 + O(e2). (A14)

APPENDIX B

In this Appendix we give the term p,(r, €) in the
series (2. 24). The lengthy calculations to obtain p, in-
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volve carrying out the procedure given in Secs. 5 and 6
to O(¢) accuracy. The only difficulties occur with the
term ¢, (r). Here one can show that Eq. (5. 1) holds to
O(€2) if one adds the correction term €J, (g, 1) to the
boundary condition (5. 2). J; is defined below. Also,
one must use AS(r,) = — (¢ + B), which is obtained from
(2. 20). The calculation of @, and the other terms pro-
ceed just as before. We now state the results.

In the subcritical case, we have

pi(r,€) =3 [ es@/ev A (v,r)dv + qol)/(1—c). (B

Let A O(V, r) be the function defined in Theorems 1 and 2
for the subcritical case. Then A; in (B1) with A, satisfy
(2. 14) and (2. 19) with » = 1. The boundary condition for
Aqis
v 1

—— Wy )
TN Jioo W0 &,

X [Jl(”, ro) - qo(ro)/(l - C)]d“-

In the near critical case, we have

Ay, rg) =

(B2)

1
prle,e) =35 [ eS®/ew A (v,r)dv + A (vp,),  (B3)

where for 0< v < 1, A,(»,r) is defined in terms of the
near-critical Ay(v,r) by (2. 14) and (2. 19) with » = 1,
A, (vy,r) satisfies Eq. (2. 23). The boundary condition
for A, is

v

T

f;o W(w) ¢, (W[ (4, To) + pT(ro)dp,
(B4)

where

T(ry) = 2 ¥y Aglvg, ro) —nlry)

‘V[% Ao(Vo, ro) + 3Q0(1/7’y 1‘0)]-

The function J; (4, ry) will now be described. Let r, T,
¢,and 11 be as in Theorem 2. Let , = (cosn, siny, 0)
and let f,(ry,n) = 3{e cos2n + 8 sin2n). We define the
functions

¥, (cosh,ry) = ZL fnz_':) Q, Vi olry, Q) dn,
7 In=

1 2
¥ ,(cosd, ry) =5 fn:;) folrg, Miolry, @) dn.

Then J, is given by

2
I, 1y) = a p(l — p2)172 ¥, (g, 1y) +p2 i(l_ﬁ_
du dp \ p

X ¥, (1, ro))+ f w2, r0>>, (B5)

where J; is defined by (2. 28).
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A consistent spinor calculus is developed within the framework of five-dimensional relativity. The
formalism is manifestly five-covariant, and in special coordinate systems and special spin frames it
reduces to a familiar spinor formalism in curved space-time. The five-dimensional formulation is free
of the difficulties involving the coupling of the electromagnetic field, which characterize the
four-dimensional approach to spinor calculus. Some theorems and useful identities in the

five-dimensional spinor calculus are proved.

1. INTRODUCTION

If the idea, first proposed by Kaluzal and subsequently
developed by Klein,2 of formulating the laws of nature
in the framework of a five-dimensional Riemannian
manifold is taken as a genuine physical approach rather
than merely a mathematical curiosity, it becomes
necessary to incorporate all physical fields into the
five-dimensional picture. As spinor fields have proved
to play a major role in the description of physical
reality, the question arises whether it is possible to
incorporate these fields into the five-dimensional forma-
lism. It is the purpose of the present work to answer
this question in the affirmative, and to develop a con-
sistent five-dimensional two-component spinor calculus.

The theory of spinors in four-dimensional space is
based upon the homomorphism between the group of
Lorentz transformations Ll and the group of unimodular
linear transformations SL(2,C). The significance of
Lorentz transformations persists in the five~-dimen-
sional theory, because one direction in 5-space is
singled out by the isometry of the space. Hence it is to
be expected that a covariant spinor formalism can in
fact be introduced. The problem of the construction of
such a formalism has been tackled by Schmutzer3 in
the framework of projective relativity. Since his dis-
cussion is confined to spinor algebra, and does not
touch upon spinor analysis, the full four-dimensional
meaning of his approach has not been evaluated. It
seems, however, that his spinor algebra is consistent
with the one introduced here. From a different point of
view initial steps in establishing a five-dimensional
4- component spinor calculus have also been investigated
by Littlewood.4

The spinor calculus developed in the present work is
free of the complications which are introduced into the
standard four-dimensional spinor formalism in order
to account for the coupling of the electromagnetic field.
In the present approach the coupling is automatically
accomplished by requiring periodicity of five-dimen-
sional spinor fields. This point will be demonstrated
in a subsequent paper,® where the spinor calculus
developed here will be applied to simple spinor field
equations.

2. FIVE-DIMENSIONAL GEOMETRY

The fundamentals of five- dimensional relativity
theory were given in a recent paper.6 The results ob-
tained there which are needed for the present dis-
cussion will be summarized briefly.

The underlying manifold ¥V is a five-dimensional
hyperbolic Riemannian space with signature -3, ad-
mitting an isometry defined by a spacelike vector field
£ satisfying

£§7qu£ullu +§u|lp=01 (2.1)
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§u§“=—1. (2.2)
Here y . is the five-dimensional metric tensor,? £ E
denotes the Lie derivative in the direction of the vector
¢£#, and a double stroke denotes five-dimensional co-
variant differentiation.

A family of five-dimensional coordinate systems,
called “¢ systems,” is defined by the conditions
£5 =1, ¢tt=0. (2.3)
The most general transformation between £ systems is
given by

x5 =x5+ A(x?), (2.4a)

xk = xk(x?), (2. 4b)
where A and x* are arbitrary functions of x1,...,x¢4.

In £ systems the components of the 5- metric tensor and
the ¢ field are related to the components of the four-
dimensional (space-time) metric tensor &y, and the
electromagnetic potential vector ¢, according to

VY55 = — 1, Y39 =—1+ ¢k¢k:
_ 5k — Mk
Ysp = yoR = 9%,
= O ki kI 2.5)
Yo =&~ Cub Y=g,
Es5=—1, &,=¢p

Under the transformation (2. 4b) ¢, transforms like a
4-vector, while under the transformation (2.4a) it under-
goes a gauge transformation

Pe=Frt A p

where a comma denotes ordinary partial differentiation.

(2.6)

Using (2.5), one can calculate the five-dimensional
Christoffel symbols 1"3;,, in a £ system. One obtains

g5 =0,

Fl?l = %(¢k;1 + ¢l;k) - %¢r(¢’kF71 + ¢lek)’ (2.7)
I}, =2Fk,
Plkm = ?m - %((plem + ¢kal)’

where {# } is the four-dimensional Christoffel symbol,
Foy =0 — 1

is the electromagnetic field tensor, and a semicolon
denotes a 4-covariant derivative.
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3. SURVEY OF SPINOR CALCULUS IN
FOUR-DIMENSIONAL CURVED SPACE-TIME

The theory of spinors in curved space-time has been
discussed by many authors.8-10 In the present work we
will mainly follow the notation of Ref.8. The funda-
mentals of this theory which are needed for the present
discussion will be outlined briefly.

Two-component contravariant spinors of the first
rank

pak), A=1,2,

are elements of a complex two-dimensional linear vec-

tor space defined at every point of space-time. Under

change of the spin-frame they transform according to
‘!/,A = SAB I} B’

where SA;(x) is a unimodular complex-2 X 2 matrix.
The conjugate spinor YA transforms according to

lp/A — SA,;.;DB, SAB = (SAB)*-
First-rank covariant spinors x, transform according to

X4 =XgS1B,,

Higher rank spinors transform like products of first-
rank spinors.

X'i= xS 4

Spinor indices are raised and lowered by the funda-
mental antisymmetric spinor €,,, e.g.,

VA =eABly, Y, =yBep,
YA = eAByy oy =yhesy,
with
€AB =— €,4p, €AB — (BA’
€rp=cip =2 =el2 =1, (3.1)
€,68¢ = 08,

There exists a one-to-one correspondence between
vectors T, and Hermitian second-rank spinors T ;,
viz.,

Tip=0%5T, T =T. .
T, =0,ABT 4p)’ AR EA

where the “mixed quantities” ¢%;, are four Hermitian
matrices satisfying the algebraic relations

. AB — ok
ok JoAB = gkl
k CD — §C .gD
0% 450, “P = 8C€ 4875,
kCAGlL . ICAGk . — oklBA
0kCAgl sp + gt CAGR < g = g*t b4,

The mixed quantities o*;, are determined by the alge-
braic relations up to 6 real parameters (corresponding
to Lorentz transformations).8

At an arbitrary point of space-time a geodesic co-
ordinate system and a spin frame can be chosen in such
a way that the first derivatives of the metric tensor and
the first derivatives of the mixed quantities vanish at
the point, and furthermore at the same point the metric
tensor takes the form 7,, = diag[— 1,— 1,— 1, 1], while
the values of the mixed quantities reduce to the Pauli
matrices8
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AB —
93)"" =

2
i[-10 e 1]10
Zi o1 ‘@ TF o1

The covariant derivative of a spinor is defined by

Vase =Var— {ABk}\bB’

1»l/A.'k. = WA,k + {BAk}wB-

together with the usual properties of differentiation
(linearity, reality, and Leibnitz rule), where the matrices
{ BA k} (“spin connections”) are to be determined by

additional conditions imposed on the covariant differen-
tiation. It is natural and common to require

ok/iB;l =0, (3.3)
which implies
A : l C
{B k}= 50,4 ("ZC'BJ? * {r k}c”éB)_ %{c k} o3
' 1
= %‘HCA("ZéB,k + {y k}oréB> + 3€4Cepcy
(3.4)

The assumption (3. 3) is made by most authors. From
here two distinct approaches are possible. Firstly, the
spinor formalism attains its simplest form with the
additional requirement

€43, =0, €48, =0. (3.5)
It turns out, however, that with this assumption it is
difficult to incorporate the electromagnetic field into
spinor field equations. This led Infeld and van der
Waerden, 11 followed by most authors, to develop the
second spinor formalism. According to their formalism

(3.5) is not assumed, but the traces {AAk}’ which are

left undetermined by (3.4), are interpreted as being
related to the electromagnetic potentials. However,
this approach has the disadvantage, in addition to the
obvious inconveniences associated with raising and
lowering spinor indices, of requiring different forms
for particles differing in their electric charge (unless
a more complicated formalism is utilized, using the
concepts of “spinor densities”). It will be shown in a
subsequent paper?> that one of the advantages of the five-
dimensional approach is that the proper coupling of the
electromagnetic field is automatically achieved by the
periodicity of the spinor fields, so that there is no need
for the complicated version of the spinor formalism.
We therefore retain the simpler spinor analysis emerg-
ing from the assumptions (3. 3) and (3.5), We then have

{BAk} =30,04 (‘”éB,k + {rlk}oré3>’

from which it follows
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{AAk} =0.

The commutation rule for the covariant derivatives is
A —_ A — A B
Vi — ¥ ik = PAg, 5,

where the curvature spinor P4,, is given by

Pau = ‘{BAk},l - {BAZ} . {cAl} {Bck} B {CAk} {BC }

and satisfies the relations

Pone == Pagie = Ppanp

PAAkz =0,

A =1 CAgs, v
Pl =30,540%05R o
(R7,, being the curvature tensor12),

tAcpB __glCBpA, —
otACPB , — 0tCBPA,, =0,
and

kCasl, pD —_ 1 A
0" CAo* apPDp,, =— 3RO 5,

B, léppB  _ 4 1psB
0 5 40°CPP7 ., =+ g RO, .

4. FIVE-DIMENSIONAL SPINOR ALGEBRA

At every point of Vj,a two-dimensional linear vector
space (“spin space”) is defined. This space is spanned
by complex two-component quantities

PAxH), A=1,2
which are functions of the five coordinates. These are
called first-rank contravariant spinors. They trans-
form in a similar way to the four-dimensional spinors

WA = GA (x#)LB,  det(S4p) =1, 4.1)
where the unimodular matrix $4; which determines the
spin frame is now a function of the five coordinates.
Covariant spinors X, transform according to

' -1
X, =X,8'8 .

Similar rules apply for dotted spinor indices. The
fundamental antisymmetric spinor is defined by (3.1).

A vector T, orthogonal to 5“, defined at a point in
Vs is, like a ﬁermitian spinor, determined by four real
numbers. We can map this vector onto a Hermitian
spinor whose components are linear functions of the
vector components, viz.,

TABZU“ABTu’ ’I‘uE# =0, TAB=TBA' (4.2)
The “mixed quantities” 13 ¢# ; ; are five Hermitian
matrices, determined by 20 real parameters. [There
also exists a correspondence between the bivectors
in V5 orthogonal to £, and the symmetric spinors. To
the bivector

Tuu'__—_rruu’ Tuu

§v =0
there corresponds the symmetric spinor

(s)y, _ HCA v,
T A =0 [ CBTpu’

(s) _q(s
TSAB_TSBA‘
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In Appendix B a somewhat different method to relate
tensors to spinors is introduced.]

There is a great deal of freedom in the choice of the
mixed qualities o ;;, and simple algebraic constraints
will now be imposed in order to restrict this freedom.
With the aid of the ¢ field four independent real con-
ditions can be imposed, namely

U“Ang = 0. (4' 3)
The other set of constraints is similar to the one im-

posed in the four-dimensional case: the correspondence
(4.2) is required to preserve the “scalar products”

TipTAB =T Tk, (4. 4)
This yields’
(0" ;50”48 —*")L T, =0 (4.5)

identically for any vector T, orthogonal to §,. In parti-
cular, (4.5) must hold for

T, =g,"0,
wherel4

Eyy =Vuw T 8,8, (4.6)

and 7, is an arbitrary vector in V;. Hence
(0" ip0" 4B —g""mm, =0

for arbitrary Tye

The condition (4. 4) is therefore equivalent to the

relation
" 450" A8 = g"" 4.7)

Equations (4. 3) and (4.7) together constitute a system
of 14 independent relations among the 20 real para-
meters of o ;,, and we are left with six degrees of
freedom. By using (4.7) the mapping (4. 2) can be in-
verted
ABTAB’

'I”u=o‘j

and when this is substituted into (4.2) we find
(0" ;50,0 — 650 ey =0
for an arbitrary Hermitian spinor T, ,. Hence we have

the relation

(4.8)

. ip — §C . 5D
oH ;50,0 = 6¢, 05,

A summary of the algebraic relations obtained so far is
given in Appendix A. These relations imply a genera-
lized “ anticommutation rule,” as can be shown in the
following way. If
Ay Ay A
531...31'” = det(éBj)

is the generalized Kronecker delta, then as the spinor
indices attain two values only, we have identically

ABC =
6585 = 0.

From this we get
_ RABC ppp.v, EF
0= 0550 #00 gc€

= 2[(0“HA€BF— U“f.’BeAF)o"I;F + g""eAB],
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where the right-hand side is obtained by expanding the
Kronecker delta and using (4. 8).

Hence

O”C'JAOV(.:B+0"€:A0“¢B =g’“’6§. (4.9)

So far no four-dimensional structure has been ex-
tracted from the five-dimensional spinor formalism.
In order to do that, we first note that in £ systems
the relation (4. 3) takes the form

OsAB =0,

and it appears that the four matrices o, AB can be re-
lated to the four-dimensional mixed quantities. How-
ever, in general ¢,48 will depend on all the five co-
ordinates. A concept in the spin space, similar to the
concept of £ system in the Riemannian space, proves to
be useful here.

Definition: A spin-frame is called a “{ frame”
if the following relation holds in that frame:

A AB =
o Bly§”+ou f,—"‘,“ 0.

§ (4.10)

Note that the condition (4. 10) is invariant under a
general coordinate transformation in V;, as can easily
be seen by writing it in an equivalent form

(OPAB,U — rﬁyo)\A’B)gy + (,y,éu;gu“p =0.
In £ systems the condition for § frame reads
o AB'S =0.

Let us now illustrate one way to construct a £ frame.
We choose a { system. Since the metric is independent
of x5, it is always possible to select an orthonormal
tetrad {(@) , a =1, 2,3, 4, of vector fields orthogonal
to the ¢ field and independent of x5, namely

C(a)pgli =0 2
yhre(@ e®) =qeby . a,b=1,2,3,4, (4.11)
C(a)”,s =0

where 9% = diag[— 1,— 1,— 1, 1].

Now we define the following five Hermitian matrices:
OHAB — C(a)uc(a)AB’

where o, )AB are the Pauli matrices (3. 2).

It is easily verified with the aid of (4. 11) that these
matrices satisfy all the rules of the five-dimensional
algebra for the mixed quantities, and furthermore they
are independent of x5. Hence they determine a £ frame.

The general transformation between £ frames is given
by (4.1), where S4(x*) is a unimodular matrix satisfy-
ing

Shg £0 =0 (4.12)

(which, in £ systems, states $4, 5 = 0).

Now we are in the position to identify the four-
dimensional formalism implied by the foregoing five-
dimensional theory. The spinor algebra in Vg, ex-
pressed in terms of ouAB and §p, reduces in a § system
and £ frame to the familiar four-dimensional spinor
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algebra for the quantities 0,48, Hence we identify 0,43
in a £ system and £ frame, with the mixed quantities of
general relativity.

Another identity involving the mixed quantities, which
will be required in the subsequent analysis, will be
established now. Let £ denote the five-dimensional

. . MvATo
alternating tensor, i.e.,

=y1/2¢

E
ByATP HyATP } > 0), (4.13)

EMvNTP = 01/2¢pvhTp

where €,,,,, and €*?*7¢ are the Levi-Civita symbols
in Vg (€ = 12345 = 1), We define

5 \€12345

e

=—E, kP (4.14)

LUNT
This tensor is completely antisymmetric in all its four
indices, and satisfies the identity:

€, 87 =0. (4.15)
Equation (4. 15) shows that in § systems all the com-
ponents of ¢ , ,. with any one of the indices having the
value 5 vanish, whereas according to (4.14) and (4.13)
one finds in £ systems that

Chivs =—( 8V 2¢,,,

eklrs — (_ g)—1/2€kl1's

(€4, and €*27s are the Levi-Civita symbols in V,,
€10934 = €234 = 1), Thuse,,,, in £ systems is the
four-dimensional alternating tensor.

The relation (4.14) between E, ,  ande,,,, can
be inverted in the following way. The tensor e v ard o]
(square brackets denote total antisymmetrization) must
be proportional to £, :
€ [pu)\rg ol = \I‘Euu ATp

for some scalar ¥, Contracting this equation with £°
and using (4.14) and (4.15) one finds ¥ = 1/5. Hence

Euu)\rp = 5e[uu)\7§p]'

It easily verified (by working in a £ systems and &
frame) that the tensor e uvrr Das the following repre-
sentation in terms of the mixed quantities:

N wa s s
eFVAT = (o ABGYCD — ¢VABgH EDYON T (4.16)

This implies also

(0PACo"DB — GV ACoRDBYGNs | = jetv Ty AB (4.17)
.
5. FIVE-DIMENSIONAL SPINOR ANALYSIS
The covariant derivative of a spinor in Vy is de-
fined by
Yo=%,, —T,BV¥
Allp A, p A ¢~ B (5. 1)

'I'Auu =SP4+ Tpd U8,

together with the usual properties of differentiation.
The five-dimensional spin connections 1";‘“ are deter-
mined by the additional conditions imposed on the co-
variant differentiation. As explained in Sec. 3, a natural
and convenient assumption is

€ABlIu = 0, (5- 2)
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In contrast to the formalism in V,, however, here it is
impossible to require the vanishing of the covariant
derivative of the mixed quantities, as this supposition
is inconsistent with (4. 3) (for this will imply another
algebraic relation among the mixed quantities, the
metric, and the ¢ field with its derivatives). Let us,
therefore, consider what conditions can be imposed on
the covariant derivatives of the mixed quantities. If

we restrict ourselves to equations not higher than first
order in the derivatives of the metric, and not containing
products of more than two derivatives or two o's, then
we are led to the following expression:

0'uABIIu = (agp‘g )\Ilu + b§V§ )\Ilp)o)\AB + cnguAB + dEuOuAB’
(5.3)

with a, b, ¢, and d being constants, to be determined in

part by the requirement that (5. 3) should not constitute

algebraic relations on the ¢'s. Contracting (5. 3) with

£+ yields

[(a - 1)5““‘, + C'}’MU]UMA'B= 0.

Hence we must take

a=1, =0.

Substituting this in (5.3) and contracting with o*, ;, one
finds

4dt , = 0.
Hence
d=0.

We are, therefore, led to the following condition:

O;JABIIV = (E pg)\llu + bgug)\llu)o)\AB? (5- 4)
with the only freedom being left in the choice of the
arbitrary constant 5. One can choose b = 0, in which
case (5.4) takes the form

Ag.AB
EARN I = 0.

Subsequent analysis shows, however, that a more co-
herent formalism emerges with the choice b = 1 [which
makes (5.4) symmetrical in the two tensorial indices],
and we will adhere to this choice. Thus (5. 4) becomes

Y ABH» =—(§,¢ u)uAUMB- (6.5)

Y
This condition can be written in a different way, in
terms of projections and the Lie derivative. Equation
(5.5) is equivalent to

iB = 5 AB AB —
°B§OuA —0“ Ilvgl/ +0y gullu _O’
by i _
gu guTo)\ABH'r =0.
We have, then, identically
s = I VAB = . AB =
o gy =0, 0 g0 AE=0, 0 4p,0," =0.

We summarize this discussion by stating that the five-

dimensional spinor analysis is defined by (5.1), (5. 2),

and (5.5). From (5.2) one finds
0=¢,,€45, =2T%,. (5.6)

.n order to express the spin connections explicitly in
terms of the mixed quantities, we write (5.5) in full, viz.,

C - Iy
o gy T Ty, 00 g — TG, 00— TG0t =—( E, ) N0 e
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Multiplying by o, 4Z and using (4. 3), (4.8), and (5.6), we
find
by
0" g
(5.7
The last equation expressed in a £ system and £ frame
implies

A
T =0 Tt ={p%-

Thus we see that the five-dimensional spinor analysis,
as well as the spinor algebra, reduces in £ systems and
¢ frames to the familiar four-dimensional spinor calcu-
lus.

A _ 1 ca v, v AL 1 vVéa
Tyt =30, "0 ¢pu * Txu0 ep) t28,8,00

(5.8)

6. FIVE-DIMENSIONAL SPINOR CURVATURE

As in four dimensions, the five-dimensional curva-
ture spinor B4,  is defined by the commutation rule
of the covariant derivatives:

VA, — Ay, =14 B

Buv ’

for an arbitrary five-dimensional spinor ¥4 It is given
by

u.u—rﬁu,u + réurgu-réurgy‘ (6-1)
‘I'he curvature spinor possesses the following sym-

metries:

HABuu = nABuy = HBAuu’
where
— JC
Opuy =U%,€04

(the second identity follows from € 5, — €45, = 0).
This implies

il

na 0.

Apv

In a £ system and £ frame, (6. 1) reduces to
45, =0, N4, = Plgy.

Considering the commutator 0,48, — 0,45, and
using (5.5) one arrives at the expression of the curva-
ture spinor in terms of the curvature tensor 6"”“‘ and
the £ field:

HABuu = %OXCAOTC‘B{GAT;JU + 28 >\|I1'§u||u
+ (‘g)‘llpgﬂlu - 5}\Ilugrllu)

+ (E pg )\Hru - Ev‘g)\llru)]' (6- 2)

The following identities, which are useful for mani-
pulation in five-dimensional spinor curvature theory

(and proved in Appendix C), are satisfied by the curva-
ture spinor

otAen®,, — 0" ¢Bh ey, =0, (6.3)
0'Ch0" ¢p Py, , = 2, (6.4)
O“éAoyéDHBDM =— 63 )

with
® = 5gMg O, 365k )

7. CONCLUSION

It has been shown in the present paper that the five-
dimensional theory of relativity and electromagnetism
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admits a consistent spinor formalism. The spinor
algebra and the spinor analysis have been constructed
in a covariant way, and their four-dimensional contents
have been investigated. The advantage of the five-
dimensional approach over the usual four-dimensional
one has been discussed. In a subsequent paper> the
spinor calculus developed here is applied to a few
physical cases, in which the benefits of the five-dimen-
sional starting point will be illustrated.
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APPENDIX A: SYMMARY OF THE FUNDAMENTAL
RELATIONS OF FIVE-DIMENSIONAL
SPINOR CALCULUS

1. Spinor algebra
okig = 0¥p4,
0“A3§ u = 0,
o jpotAB =gt = oM 4 EREY,
o'llABo-“'CD = 6,;%2,

Weag?, * 4+ gUCAgh = gHVsA
0°Ch0 g+ 0 Cho ey =g 0,

(GHABRYED _ qVABPEDYGN . 5T . — oMV AT = _ pHUATP
i(oc"ABg 0’ ABghCD)o™ s 0" g =€ =—E £,

Il. Spinor analysis

€AB =0,

€4p1, = 0 1

AB Mig
0” Iy — (5 ug u)ll)\o .

Spin connections:
1

A _ 1. CA v v\ 1 veah,
rBu =320, (0 CB,u + F)\}JO CB) + nggull)\o 9 ¢B

Curvature spinov:

A —TA _TA A TC —TA TC
I Buv FBH,V er,u+ I-‘Cvl—‘Bu FCAI‘BU’
A, =1, CAgT, A X
I Bpv — 20 OTCB[O THY + 2§ H‘rgullu

+ (g}\llug i g)\llu‘grlm)
+ (E }lg)\HTD - gug)\llﬂt)]'
Iil. & Frame
1t is defined by
OUAB,Ugv + C,y/iz‘sgu,‘1 =0,
The general transformation between £ frames is
SAp(xk); det(S45) =1, S45 &¢ =0.

The following holds in §{ systems and £ frames:
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0,48 o =0,
0548 =0, 0,48 = the four-dimensional mixed
quantities,
A
T =0, FBAkz{B k}’
D4p5, =0, TAg, =Phg,.

APPENDIX B: SPINORS AND BIVECTORS

In Sec. 4 a correspondence between 5-vectors ortho-
gonal to €“ and Hermitian spinors has been analyzed.
In this appendix it will be demonstrated that as a basis
for the spinor calculus of this paper we can take a
correspondence between spinors and a set of tensors
which are not necessarily restricted to being ortho-
gonal to £ ,.

First we observe that with the aid of the mixed
quantities defined in Sec. 4, a one-to-one mapping can
be established between the 5-bivectors orthogonal to
£, and the symmetric second rank spinors. Namely, if

is a 5-bivector orthogonal to E“
&; Nug V= 0’
then we define the spinor

(g — SH¢an?, &
d g =0 oéB‘I’pw

which is symmetric
q:(S)AB = q;(S)BA.
This relation can be inverted

3 ¢B
(I)l-ll/ = %(OACAUU q’(S)AB +ec.c.)
1 ¢B, (s), BA . (s) 2

=30,04(0, T A+ 0,770 0y,

The “scalar products” are related according to

&’uu&’w =%(‘I’(S)AB‘I’(S)AE + c.c.),
o), 00048 =3 4 — Lie" TG B .
Now let ¢, , =— &, be an arbitrary 5-bivector. Thenl®

it defines in a unique way a pair @, % uu) consisting of
a vector and a bivector orthogonal #o £ 4» such that
éuv = q’uu + guq’v - qu)u’
- - (B1)
V — —_
$,5v=8 tv=0

Solving for &  and $,,, we find

¢, =¢,.487

-~

q’uu =gp>\gv‘rq))\r'

Conversely, every pair (@u, @“ ,) consisting of a vector
and a bivector orthogonal to Eu defines a bivector @,
according to (Bl1).

Combining the results obtained in this appendix and
in Sec. 4, we see that there is a one-to-one mapping
between the set of all 5-bivectors ¢ ,, and the set of
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pairs (W, &), ) of a Hermitian and a symmetric
second rank spinors. For a given bivector ®,,,the
corresponding pair of spinors is defined by

(Mg

OPAB‘bpygyi
(s) — SHEALY A, T 'Y,
® AB =0"C40 éBgugu ‘I’M =0 CAoyéBq’uv'
Conversely, given a pair (®(*);,, &(s), ) the corres-

ponding bivector is defined by

o] AB : (k)
®,, =3(0,840, ¢I>(S)AB +e.c.) + (§,0,7 — £,0,48)8" ;5.

The “scalar products” are related according to
3 R)4
q:pyq,l“’ = %(‘I’(S)Anq’(s)AB +c.c.) — 2‘1’( )AB‘I’( )AB,
(7) (M ip _ 73N
@R A= @ £,

(s) X . A
& sAB(I)(s)AB.:(gu gu-r_%zeuu T)‘I)uuq’)\r'

APPENDIX C: IDENTITIES IN FIVE-DIMENSIONAL
SPINOR CURVATURE THEORY

In this appendix identities (6.3) and (6.4) are proved.
By substituting the expression (6.2) and its complex
conjugate, and using (4. 3), one finds

‘I’ﬁB = ouACHBC“y _ ou CBHAé”,,
=1(0"4 cg DB OXACOVI'JB)OTI}C

X [exruu + 2§>\||T£M”Il

+ (g )\Ilpg v gkllug ‘rllp) + gug )\Il'ru]'

This, in view of (4. 17), becomes
‘I’ﬁB = %iey)\Tpo;‘;iB[@)\Tuu + 2§)x|l1'£p|lu
+ (g)\”[J&T“U - E)\va'r”[l) + gpg)\llru]'

Due to the cyclic identity of the curvature tensor, we
have

It

e"”POMM 0.
Also, evidently we have

e o286, E L F Epd o — S a1 =0

and
A [ A =
ev Tpg)\ll'ru - ev Tp@)x'rvogc 0.
Hence
AB —
¥48 =0,

For the proof of (6.4) the expression (6. 2) is used again:
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A — BEaY D
Yo =0 Ch0 o pll7p,,
i v ) T
=30 Cdg &% EDg EB[OM'uu + 2§M|r'£ullu
T Exppbrw — Exnb el
In the product of the four ¢'s one can commute the
indices v and X using (4.9) to get
VA = [L g7 0" CAg T, — L(o¥ CAGVED — oY CAGHED) N, o ]

X [Oxrup t 28508 0 T Exnndrnw — Exmnd ru)]

ir VN, AL T Ta, M . purp  CA T
=3[g (0" CA0 g+ 0 CAg sp) +ie 0, "0 ¢p)

X [6)\7;11/ + zg)\llrgullu + (g )\llugrllu - E)\vaT”u)]‘

The term containing e#?*? vanishes, and for the re-
maining term we use again (4. 9) to get finally

VAL =387k T(O,,,, + 35y.4,,,)08,

which completes the proof of the first equation of (6.4).
The second equation follows from the first, since

", vépnB — _ ~HEPE YV, B DF
0 a0 PIT,,, =— 0" C8¢" o ll7p, €gu€

D

= g*¢EsY . nf BD _ s6F BD
=0 CP0 op Il p €p € = BOpep €

=— 364
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The theories of the neutrino and the electron are studies from a five-dimensional point of view. The
concept of periodic S-spinors is examined, and the formalism of five-dimensional spinor calculus is
applied to the manipulations of spinor equations. It is shown that the five-dimensional approach
reproduces the results of the familiar four-dimensional approach in a unified and coherent manner.
Furthermore, the present approach predicts in a natural way the correct coupling to the

electromagnetic field, without ad hoc assumptions.

1. INTRODUCTION

Following the idea of taking the five-dimensional rela-
tivity theoryl as a genuine consistent approach to the
description of physical reality, it is appropriate to ex-
amine the theory of the neutrino and the electron from
a five-dimensional point of view. The tools needed for
this purpose are the geometry of periodic five-dimen-
sional objects, which has already been studied? re-
garding tensorial objects, and a five-dimensional spinor
calculus, which has been developed elsewhere3 (this
work will be referred to as SC).

The present work starts with an analysis of the con-
cept of periodic 5-spinors, expressed in a 5-covariant
manner, which is motivated by the usefulness of the
periodicity concept in the theory of 5-tensors and by
its simple geometrical characterization. Then the sim-
plest spinor equations for periodic 5-spinors are in-
vestigated, with the application of the general five-
dimensional spinor calculus. The merits of the five-
dimensional approach as compared to the common
four-dimensional approach are discussed.

2. THE CONCEPT OF PERIODIC SPINORS

In a £-system and £-frame4, let us consider a 5-spinor
¥ (x) which is periodic in x5,

W (xF x5 + 21/a) = ¥ 4(x %, x5),

where o is a real constant. This can be expanded in a
Fourier series,

U0 = 5 e

where ¥ ,®) are arbitrary functions of x1,..., x4,
Writing

¥, =y (ginas®
so that

o0
V,= 2 ¥,
n=-00

we have

T, o =idnal M,
In view of (SC-5. 8)5 this first order differential equation

can be written in a 5-covariant manner (covariant under
both coordinate and spin transformations),

£§\IIA(’1) = \IIA(n) "“ k= ina\IlA(ﬂ)

(note that the Lie-derivative operator acts on tensorial
indices only, and not on spinor indices).
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This form will be the basis for the definition of the
term periodicity. A five-dimensional spinor ¥ ,, will
be called periodic with periodicity constant a if

LY g, =ia¥,y , (2.1)

where a is a real constant.

It follows that such a periodic 5-spinor can be writ-
ten in a £{-system and ¢{-frame

Vg (6F) = eies Yo (xh), (2.2)

and the four-dimensional quantities ¢ ,,  induced by
the 5-spinor will be interpreted as physical spinor fields
in space~time. In the case a = 0 the spinor ¥ ,;is
called cylindrical.®

Example: The fundamental antisymmetric spinor
€ 45 and the five-dimensional mixed quantities o, 48 are
cylindrical.

This is obviously true for €,5, and for o, AB it is
proved by using (SC-5. 5):

= ' AB,
JZgUpAB“OpAB |\D£y + o, gl‘kllu
v -
— (5,8 8r0 AB+ &, 0 A

= (glt“” + gy”“)UVAB: 0,

We shall now investigate the properties of a periodic
spinor ¥ , in more detail. In a { system and £ frame it
has the representation

Y (x) = eiex"y (x %), (2.3)

Under the general transformation between £ frames
(SC-4.12) y , transforms like a four-dimensional spinor.
However, with regard to the general coordinate trans-
formation between £ systems (SC-2.4), we find that
under (SC~2.4b) y , behaves as a 4-scalar, whereas
under (SC-2.4a) ¥, transforms according to

IPA = d,Ae‘iaA’

which can be interpreted as a gauge transformation of
the first kind. Thus the periodicity condition for the
5-spinoy Y , automatically ensuves that ¥ , is endowed
with all the transformation properties of a charged
spinor field in space-time in the presence of an electro-
magnetic field.

In a £ system and § frame the following expressions
are easily obtained:

o5 = 31”5(1'0‘1/,4),
\I;Allkzyku\ltmm — eiu5(ak¢,A)’ (2.4)

— . 5
Y Sy g, = e (3,0 R, + a2y y),
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M AR o kA
0 ABlp, = et g ABY g, (2.5)
where 9, is the four-dimensional “gauge invariant”
covariant derivative:

OW A= Wa T iQP W, (2.6)

3. THE NEUTRINO EQUATION

In this section we shall investigate the consequences
of assuming the existence of a 5-spinor, which in
addition to being periodic satisfies also a simple spinor
equation. Let then ¥ ,(x*) be a five-dimensional period-
ic spinor, viz.,

Vbt = dal,,
(3.1)
Y8t = — ok,

From now on the complex conjugate counterparts of the
equations obtained will be understood and will not be
given explicitly. The simplest five-dimensional spinor
equations which can be set for this spinor is

o' By =0, (3.2)

In a £ frame (3. 2) reduces to (according to the results
of Sec. 2)

¥ (xH) = ety (x k), (3.3)

o*imy . = 0. (3.4)

Equation (3. 4) is precisely the Weyl equation? for a
charged “neutrino” with electric charge ¢ = — Za. The
case of physical electrically neutral neutrino is obtained
by setting @ = 0 [i.e., ¥ (x*) is a cylindrical spinor].

In order to incorporate the neutrino field into a gravi-
tational—-electromagnetic theory, a real, symmetric,
cylindrical, divergence-free tensor T ,, is required$,
to construct the energy—momentum 5-tensor. It is
easily proved that the 5-tensor

Ty = 0, 480,0 — £,8") + 0,480 — g, £V)]
X (T ¥p— ¥ ¥g, (3.5)
is real, symmetric, and cylindrical, and in Appendix A
we show that
Tll y“ v = 0- (3. 6)
This tensor can also be written in the equivalent forms
Ty = i(0,ABON + 0, ABS N 4\ p— ¥ ;¥ p,)
+ %(Jpéy +dJd, 8L, 3.7)
Tyy = i(0,4Bg, > + Uu“ing Mg Tp— Fi¥mn)

+(J,6, +J,8,), (3.8)

where
Jp = — 4&0“AB‘I/A‘I‘B.

The four-dimensional quantities induced by this tensor
in a £ system3 are

— T5k= —4aokABlpA\pB= JE
. ki H —
TH = (0 A8l — o ABgn)[(9* W W 5 — ¥ [0, W p)] = THL

{In the second equation the expressions (2. 4) have been
used.] The four-dimensional vector J* is the “charged
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neutrino” charge—current density, while T %’ is the four-
dimensional neutrino energy-momentum density.
Following the general procedure outlined elsewhere$8,
the five-dimensional gravitational-electromagnetic
field equations become

— 1
E;.lu "Kpu +3Ty, = 0,
since
Y= 'y“”T“U =0.

These equations are precisely the Einstein—Maxwell
equations for curved space—time containing a “charged
neutrino” field. The 5-conservation law

E uyll v = 0
is equivalent to charge conservation together with the
conservation of four-dimensional energy—momentum.

4. THE DIRAC EQUATION

Motivated by the four-dimensional spinor theory, we
shall now proceed to consider periodic 5-spinors sub-
ject to the five-dimensional Dirac equation. Let then
(¥ 4, X ;) be a pair of five-dimensional periodic spinors
with the same periodicity constant a:

¥y 8t = i@l y, (4.1)
X g ¥ = iaX 4

As the field equations to be satisfied by these spinors
we will take the five-dimensional Dirac equations, viz.,

otABy .+ MXA =0, @2
"5 :
o4 BAXé““ + M¥A =0,

With the same real constant M. These equations are
consistent with the periodicity conditions (4.1). In a
£ system and ¢ frame Egs. (4. 1) and (4. 2) reduce to
T xk) = eiaxy (xh), X xb) = eiax’y fx k), (4.3)
k . .

0 AB3 Yo+ MxA=0,

ke (4.4)
o BAY xz+ My4A=0

[0, is defined in (2.6)]. (¥, X4} is a pair of four-
dimensional two-component spinors, endowed with a
gauge transformation of the first kind. Equation (4. 4)
is precisely the Dirac equation? in curved space—time
in the presence of an electromagnetic field for a par-
ticle with an electric chargel0

e =—Hho
and mass
m = J2EM.

Note that the coupling to the electromagnetic field
through the “gauge invariant” covaviant devivative
is a vesult of the 5-periodicity of the spinov field, and
not an additional assumption.

In Appendix B it is proved that the real, symmetric,
and cylindrical 5-tensor

Tyy = i[opAB(by)‘— 5./5)‘) + oyAB(GM)\_ gug)\)]
X (¥ ¥p—Ya¥my— XanXa+ XiXp)) (4.5)

is divergence-free:
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T‘J ll” v = 0, (4. 6)

and hence can be used for the construction of the five~
dimensional energy—momentum tensor. Equivalent
forms for the Y, tensor are

Tyy = 40, A0, + 0, AB5 N(¥ 4, ¥ p— ¥ ¥ 5,

— XXt XiXm) T2, + LE) 4.T)
and
Ty = i("uABgu Moo, ABg (W 4 ¥ g — T ¥ g,
—X g Xpt+ X Xp) + (L5, +1,§), (4.8)
where
I, = — 400, AB(¥ ;¥ 5 + X ;X o). (4.9)

The four-dimensional quantities induced by this tensor
in a £ system are

k .
— Tgk=—4da0 ARy ¥ 5+ xixp) = J%
TR Z'(O-kABgl-r + glABghr) (4. 10)
X [V DV p— ¥ A3, ¥ 8 — (3,x4)xs + X427 xa)]
= T

The four-dimensional tensors J* and 7T #! are the elec-
tron charge-current and energy—momentum densities.
The five-dimensional gravitational—electromagentic
field equations are

E,, =K, + é(Yw +£,6,Y),
with
Y = yHrY = 2M(E X A— W, X4,

and they are equivalent to the combined set of the
four-dimensional Einstein—-Maxwell equations with the
Dirac field as a source. The 5-conservation law is
equivalent to charge conservation together with the
conservation of four-dimensional energy—~momentum.
The five dimensional field equations of this section
are derived from a 5-variational principle, where the
Lagrangian is integrated over a domain consisting of
entire periods, and the variations of the metric and the
electron fields are restricted to those preserving cylin-
dricity and periodicity conditions, respectively (in the
case of the neutrino theory, of course, the variations of
both fields must preserve the cylindricity conditions).

It is interesting to note that in contrast fo the case of
periodic tensor fields satisfying second order field
equations (which have been discussed in Ref. 2), no
special role is played here by a spinor field with a
charge-to-mass ratio le/m| = 1.

5. CONCLUSION

In the present paper the theories of neutrino and
electron have been worked out in the framework of the
five-dimensional unified theory of relativity and electro-
magnetism. The spinor calculus developed in a previous
paper has been fully employed. It has been shown that
the results of the familiar four-dimensional approach to
the theory of neutrino and electron are reproduced by
the five-dimensional approach in a coherent way and on
the basis of simple assumptions. It is striking that the
proper coupling to the electromagnetic field turns out
to be a consequence of the periodicity of the 5-spinor
fields, with the implication that no special provisions in
the spinor formalism are required for that purpose (as
is the case in the usual four-dimensional approach).
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This paper demonstrates also that the concept of
periodic 5-fields, which has already been utilized for
the analysis of various physical tensor fields, can without
difficulty be extended to include spinor fields. There
are reasons to believe that the benefits of working with
such fields have not yet been fully unearthed, and the
concept of periodicity may appear to be fruitful in other
contexts also, and therefore deserves further study.
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APPENDIX A: NEUTRINO ENERGY-MOMENTUM
TENSOR

In this appendix the vanishing of the divergence of the
neutrino energy~momentum 5-tensor (3. 5) will be
proved. In order to do so, we shall first establish a few
identities.

Throughout, let ¥ , represent a periodic 5-spinor
satisfying the neutrino equation (3. 2). Then we prove
the following five identities:
(i)  ghv¥y,, = ¥, + 200
with

. oYCB
pil w0 ga0 By,

@ = 38" g NO e + 36,8 ) (A.1)
Proof: We differentiate the neutrino equation
oh ey, =0
covariantly with respect to x¥ and multipiy by ¢V s,
using (SC-5. 5), (SC-4. 3), and (3. 1), to get
— i@k, 0 a0 CBE g+ 0¥, 0" CBE L = 0. (A.2)

Writing
1
Yoy = 2(¥puy + ¥y ) — 20%,, ¥,
and using (SC-4.9) and (SC-6. 4), we have
g CAUuéB‘I’Blluv = 3(ov CA"p CB 4 gb CAUU CB)‘I’Bllpu
+ 3ok CBIP,, W

ghow

D
LA

ol

Allpy
This is substituted in (A. 2) to give (i).

(1) ¥, = (D + a2)¥, + 2iak, 04 507 CBE 5.
Proof: Using the periodicity condition we get
Ty = (g — EHEN = R+ a2,

From this and (i) follows (ii).

(iii) iO” AB(‘I’A“ yll u‘IlB—‘ ‘I’A\IIB“ g 1 u) = gull yJu-
Proof: Substituting (ii) we find

o, AB(‘I’A” inp— Y ¥R

[ v
= — 20(0, ACg" DB 4 o"ACg DB)G A5 kW0,
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In the second term the formula (SC-4.9) is applied
twice to commute the o's, and we get (iii).
(iv) ic” AB(‘I’Aup W¥p— ¥ ¥p u V)

=—io"AB (T, ¥p— Y ¥y ).

Proof: The left-hand side is equal to

. V2
10 ARy, ¥ p— ¥ ¥ ,)

. V2 .
+ i(o ACIIBCW - OVCBIIAC-“”)'{'A'IIB.

The second term vanishes due to the identity (SC-6. 3),
while the first term, with the aid of the neutrino
equation, becomes the right-hand side of (iv).

(v) J*

M =0, 8 =6 ,dY

The proof is straightforward.

Now we are in the position to prove (3.6). We cal-
culate the divergence of Y, in itsform (3.7), taking
into account the neutrino equation and (v):

Ty = iouAB""(‘I’Auu‘I’B_ Vi¥g,)
+ iGpAB(\IIA“yHV\IIB_ ‘I’A\I,E“u ||U)
R
+ a0 AB(W 4 ¥ — ¥ ¥p) + £y T

For the second term (iii) is used, and for the third term
(iv) is invoked:

i v §
Y,y = doy, ABllv _ " 4B hp) (Y41, ¥p— ¥i¥p,,).

This expression vanishes, since according to (SC-5.5)
the first bracket is identically zero.

APPENDIX B: ELECTRON ENERGY-MOMENTUM
TENSOR

In this appendix the vanishing of the divergence of
(4. 5), which is used for the construction of the electron
energy—momentum 5-tensor, will be proved. The steps
of the proof run parallel to the steps in Appendix A, and
the details of the calculations here can be omitted when-
ever they are very similar to those of Appendix A.
Again a few lemmas are needed.

Throughout, let (¥ ,,X,) represent a pair of periodic
5-spinors [i.e., subject to conditions (4. 1)], satistying
Dirac equations (4.2). Then we have the following five
identities:

(1) g, = Q¥ , + 2iak
with
Q= —2M2

Y¢B
pli 0" g0 P,

and @ being given by (A. 1).
Likewise,

g“uXAlluu = QXA + 2io[gpll v o ACUVﬁCXé .

[There is a complete symmetry between the roles of

¥ , and X 4 in the theory. Hence all the statements here-
after, which will be expressed in terms of ¥ (X 4), can
also be expressed in terms of X 4( ,), and we will not
bother to write this down explicitly. ]
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Proof: We differentiate the Dirac equation

o" By, = — Mx¢
covariantly with respect to x” and multiply by o¥ s,:
— iag U”éAoy¢5§!B+ G“CA(I“C'B‘I/B“W

= _MUVC'AXC Wy =— M2¥ .

plly

The second term on the left-hand side, as has been
shown in (i) of Appendix A, is equal to g% ¥ 4,
— 3 ¥ ,, and hence (i) here follows.

(1) My, = (R + a2, + 2iaf,, 08 ca0 CBY o

(i) o, AB(EN Y, Wy YTl —X Y X,

+ XX ") == 8T

s . ¥
(iv) o AB(¥ 4y ¥ — i ¥g = XX+ XiXg0)
R
=—i0 4B (¥, ¥p— ¥ %5, — X4, X5

+ XX py,) + IM(E XA — ¥, X4
Proof: The left-hand side is equal to
. V3
i0 AB(W ), ¥e— Y i¥p 0, — X400, Xp+ X i Xpy0,)
L, Ve v .
+io ACTB,, — o CBIA )(¥;¥,— X X ).

The second term vanishes, while the first term, with the
aid of Dirac equation, becomes the right-hand side of (iv).

(V) IU”“::O, Iu”ygl':gu”ylu.

Now we are in the position to prove (4.6). We calculate
the divergence of Y, in the form (4. 7), taking into
account Diract equation and (v):
Ty = iouAB”y(‘I’A 1w~ i, — Xin X + X;X50)
— iM(W XA — U XA+ o AR B
— TR, =X, X g X X )
. Vi
+do AB(Wgy e — U e — X Xp + XiXp) )
+Eu, 1Y

Substituting (iii) for the third term and (iv) for the
fourth term, we find

v
Tuiy

o .
z(opAB“y'_U AB Ilu)(‘I’AlluqlB_ ¥V,
— X, Xpt+ X Xpgy)

=0.
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The problem of scalar wave propagation in the half-space bounded by a rigid, randomly rough
surface which is a small perturbation of an infinite plane is considered. It is shown that, if the
boundary roughness is statistically homogeneous, the coherent (or average) wave satisfies a
generalized impedance boundary condition on the average boundary. This is referred to as a
“smoothed” boundary condition. Applying it to plane waves yields an expression for the effective
plane-wave reflection coefficient C, of the boundary. For the case of isotropic roughness,
approximate expressions for C, are obtained for both long (relative to the correlation length of the
boundary roughness) and short waves. These expressions show that generally |C,| < 1, and therefore
that the amplitude of the coherent wave is diminished upon reflection from the boundary. This is the
result of scattering of energy out of the coherent wave by the boundary roughness. It is also shown
that this type of boundary can support a surface wave. This wave propagates at near-grazing
incidence with a speed slightly less than the free-space propagation speed. Its amplitude decreases
with propagation distance, also as a result of scattering by the boundary roughness.

INTRODUCTION

We consider here the problem of scalar wave propa-
gation in the half-space bounded by a rigid, randomly
rough surface which is a small perturbation of an in-
finite plane. The procedure is to express the solution
for any realization of the boundary in terms of a per-
turbation expansion in a small parameter measuring
the deviation of the boundary from the plane, which is
also the average boundary. This expansion is carried
out to terms of second order, which is equivalent to a
double scattering approximation. By taking ensemble
averages, we obtain an expression for the coherent (or
average) wave, We use this expression to show that, if
the boundary roughness is statistically homogeneous,
the coherent wave satisfies a generalized impedance
boundary condition on the average boundary. We call
this a “smoothed” boundary condition. Together with
the original equation of motion, and a radiation con-
dition, it constitutes a boundary value problem for the
coherent wave.

By considering plane-wave solutions of this boundary
value problem we get an expression for the effective
plane-wave reflection coefficient C, of the boundary.
This expression shows that generally C, depends on the
direction of propagation as well as on the frequency and
angle of incidence. However, if the boundary roughness
is statistically isotropic, C, is independent of the pro-
pagation direction.

For the case of isotropic roughness we obtain approx-
imate expressions for C, for both long (relative to the
correlation length of the boundary roughness) and short
waves. We show also, by a modification of this analysis,
that a rough boundary can support a surface wave.
These results are described in more detail in the ab-
stract and in Secs.IIB and IIC.

Equivalent impedance boundary conditions for rough
surfaces have been obtained previously by Twerskyl.2
and Biot.3 Twersky's model of rough surface reflection
and scattering consists generally of a plane wave in-
cident on a random distribution of arbitrary, but identi-
cal, bosses on a plane surface. His results for arbitrary
bosses have been specialized to hemispheres and semi-
cylinders,1-2 and to semielliptic cylinders.4 They have
also been used to plot graphs of both magnitude and
phase of reflection amplitudes for the case of hemis-
pherical bosses5. Biot used a uniform distribution of
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sources and dipoles on a plane as a model of a rough
surface. His boundary condition is general in the sense
that it is not limited to plane waves; however, it is valid
only for the case in which the wavelength is much great~
er than the scale of the surface roughness. In contrast,
the present results are not restricted as to wavelength.

Derivations of impedance boundary conditions for
rough surfaces have also been given by Senior,® who
treated the electromagnetic case, and by Lysanov,7 who
considered the acoustic problem with a pressure-
release surface. Both of these investigators used per-
turbation methods. More recently, Zipfel and De Santo8
have studied the scattering of scalar waves by a rigid,
randomly rough surface with the aid of diagram
methods. The problem of differential equations with
random boundary conditions has also been examined
from a general viewpoint by Keller,® who adapted a
method which has previously been applied to the study
of differential equations with random coefficients.19

More complete reviews of the extensive literature on
scattering and reflection of waves by randomly rough
surfaces have been given by Beckmann and Spizzichino,
Fortuin, 12 and Horton.13

I. DERIVATION OF THE SMOOTHED BOUNDARY
CONDITION

The type of problem we wish to consider involves,
generally, finding certain statistical properties of the
function ¢(x, v, z) which is a solution of the reduced
wave equation

(VZ2+ k)0 =] (1)

in the region z > eu(x, y), subject to the boundary con-
dition

3¢

— =90

av 2)
on 2z = €u(x,y), and a radiation condition. The {non-
random) source function f(x, y, 2) is assumed to be
given, and the random function p, which defines the
boundary, is assumed to have zero mean. Also, vis a
unit vector normal to the boundary, € is a small para-
meter measuring the deviation of the boundary from the
x—y plane, k is a positive constant, and a common time
factor exp{— Bt} (8 > 0) has been dropped. Here we
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shall be concerned with the ensemble average of ¢,
which we call the coherent wave, It should be noted,
however, that the method we employ can also be used to
obtain other statistical properties of ¢, such as the
mean square, covariance, etc. It can also be used to
treat cases in which the average boundary is other than
a flat plane.

We begin by assuming a solution of Egs. (1) and (2) of
the form
O(x, 9,25 €) = dOAx, y,2) + €p W(x, y, 2)
+ 20@x,y,2) + 1 (3)
By substituting Eq. (3) into Egs. (1) and (2), expanding in

powers of €, and collecting terms in like powers of €
we find that the functions ¢ {(*® must satisfy the equation

fy n = 0)
(V2 + £g)p ={ (4
0, n>0,
in the region z > 0, subject to the boundary condition
0 n =0,
¢(Z)={ ! (5)
_“x(pgrz-l) + uy¢(yn-1)_ u¢§'£'1), n >0,

on the plane z = 0. In addition, we require that each of
the functions ¢ () satisfy a radiation condition at «.

Equations (4) and (5) can be solved with the aid of the
appropriate Green's function. This yields the following
recursion formulas for the functions ¢ (#:

9O ,y,2) = [ 632 8,0, 05 (6, m, O)dednds,  (6)

0t y,2) = @)L [ [ Flx~ &y~ 1, 2){u (& )

X (£, 1, 0) + y(€, ML n, 0) — wlk, n)
x¢ln1) g, n, 0))dedn, n > 0. Q)

Here the Green's function G is given by

G(x,y,Z; &, n, C) = (4")~1[F(x_ gyy — Nz — C)
+Fx—£§y—mnz+0] (8)

where

Fla,, 0, a5) =~ s tethos (9)
and

s = (a3 + 03 + ag)l/2, (10)

We now wish to use Eqs.(6) and (7) to write the solu-
tion for ¢, correct through terms of order €2, in terms
of $©, G, and 1. To do this, we must first substitute
into Eq. (7) (with n = 2) the formula for ¢ (V obtained
from Eq.(7) with » = 1. However, upon differentiating
Eq. (7) (with n = 1) we find that we cannot set z = 0
in the resulting expressions because the integrals
appearing in them become divergent. This difficulty
can be overcome if we first integrate by parts to eli-
minate derivatives of F before setting z = 0. In doing
this we use the fact that the function F satisfies the
equation

F +F + F
4% Gals

+k3F = 0

gty
when s # (0, Then by substituting the resulting expres-

sions for ¢V, ¢{, and ¢ (L) into Eq. (7) (with » = 2), we
obtain a rather unwieldy expression for ¢ which we
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shall not write out. Instead, we give here the result
of averaging that expression. It is

o0 o0

P, y,2) = (4n2y1 [[ Fe— &,y —mn2) [ F&,n,0)

X [Ryg (&, )N + &1+ 7, 0)

+ 2R, (5,10 Q¢ + £, n+7,0)

+R(E,1)0QE + &, n+ 7,0

- 2R§(£,, TI')¢,(;02)2(5 + ‘Ela n + n'r 0)

— 2R (§/,n)05%, (5 + &, 1+ n',0)

+R(E, 199, .6 + &0+ 1, 0)]

X dt’dn'dEdn. (11)
The overbar denotes an ensemble average. In deriving
Eg.(11) we have assumed that the random function u is

statistically homogeneous, and we have introduced the
correlation function

R(E,m) = plx, ulx + &,y + n). (12)

The solution for @, correct through terms of order €2,
can now be obtained by substituting Eq. (11) into the ex~
pression obtained by averaging Eq.(3). This expression
is

?6 - ¢(0) + €2m + O(e3). (13)

In deriving Eq. (13) we have used the fact that ¢ = 0
and that ¢ @ is nonrandom.

Equations (11) and (13) give the solution for the co-
herent wave, correct through terms of order €2, in
terms of ¢ ©), which we call the incident wave, and the
correlation function R. This form of the solution is use-
ful if we wish to find the coherent wave field resulting
from the scattering by the boundary of a known incident
wave. For certain purposes, however, it may be more
convenient to formulate a boundary value problem for
the coherent wave which does not involve the incident
wave. This can be done by first noting that, as a con-
sequence of Eq. (13),

p©@="¢ + O(€2).

Hence, we can replace ¢ © by ¢ in Eq. (11) without
introducing an error of magnitude greater than O(e3) in
Eq.(13). Next, we differentiate Eq. (13) with respect to
z and set z = 0. By using Eq. (9) and the definition of the
Green's function, and noting that ¢‘%(x,y, 0) = 0, we ob-
tain

5.06,9,0) =~ 5 [ [ MR (6, T, (x + &3 + 7,0)

+ 2Ry (£, M, (x + &9 +1,0)
+R (£, Md,,x + £y +n,0)

— 2R (§, M, .. x + &y +n,0)
— 2R (£, M, (x + &y + n,0)
+R(E, M, ,..(x + &y + n,0)]dédn. (14)

Here p = (§2 + #2)1/2 and we have neglected terms of
order 3.

Equation (14) shows that the coherent wave satisfies
a generalized impedance boundary condition on the aver-
age boundary z = 0. We call this a “smoothed” boundary
condition because it is applied at the average, or smooth~
ed, boundary, and also because the above analysis is
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somewhat analogous to the smoothing method, which has
been used to study wave propagation in random media.14
Equation (14), together with Eq. (1) (with ¢ replaced by ¢ )
and the radiation condition, constitutes the desired bound-
ary value problem for the coherent wave.

1. PLANE WAVES

In order to make clear some of the implications of
the smoothed boundary condition, we consider plane-
wave solutions of the boundary value problem for ¢.
We being by assuming a solution of the form

O(x, v, 2) = Ylz)eithx k), (15)

Upon substituting Eq. (15) into Eq. (1) (after setting f = 0),
we find that ¢ must satisfy

Y"(2) + m2y(z) = 0,

where m2 = kZ — k2, k2 = k% + k%, and the primes
denote differentiation. Applying the smoothed boundary
condition to Eq. 15 yields

(16)

¥’(0) + ky(0) = 0, (17)
where
K = €2K(k, k), (18)

Kl ko) = o= [0 ™ {mer(e, m

+ 2im2[k R (€, n) + kaR (§, )]~ [RER(E, 1)

+ 2k kR (6, m) + k3R, (£, )]} e#CRatt kemddEd,
(19)
and k = (kq, k,). The radiation condition is relaxed in
this case, since the source is, in effect, at «. Instead, we

require merely that the solution remain bounded as
Z —> o0, .

Note that the quantity «/ik, may be regarded as the
effective boundary admittance for plane waves.

Equation (16) has the solution

Y(z) = Ae"™z + A emz, (20)
where A_and A, are undetermined constants. By invoking
the boundary condition [Eq. (17)], we find that A_and A,
must satisfy

(k — im)A_ + (k + im)A, = 0. (21)

If kK = + jm, Eq.(21) shows that neither A_ nor A, can

vanish (except in the trivial case); hence, the boundary
condition at z = « applied to Eq. (20) shows that » must
be real. Consequently, # must be real, with %2 < 3.

Thus, Egs. (15) and (20) represent a system of incident
and reflected waves.

The effective plane-wave reflection coefficient C, of
the boundary is defined to be the ratio of the reflected
to the incident wave amplitude. Equation (21) shows that

1 + ix/ky cosy

e

= ——— 22
1— ix/k, cosy (22)

where x, the angle of incidence, is equal to sin"}(k/k,).
By neglecting terms of order €4, we can write Eq. (22) in
the form

C, =1+ 2ik/k, cosy. (23)

Note that C, depends on the direction of propagation as
well as on the frequency and angle of incidence.
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We can use Eq.(22) to relate the present theory to
that of Twersky (Ref.6) by noting that Eq. (22) is identi-
cal to Twersky's corresponding result [his Eq. (37)]
provided that we set

ik/ky cosx = Z,. (24)
The quantity Z, is related to Twersky's effective bound-
ary impedance by his Eq. (38). Substituting for Z, in Eq.
(24) from Eq. (76) of Ref.6 yields

mpf = ikgyK, (25)
where, in the notation of Ref. 6, p is the average number
of protuberances per unit area and f is the scattering
amplitude of a single protuberance. Thus, we see that
the present theory is formally equivalent to that of Ref.
6, at least insofar as plane-wave reflection is concerned,
provided that we relate the quantity « of the present
theory to the product pf of Ref. 6 through Eq. (25). Note
also from Eq. (25) that the quantity (¢/m)kyx of the
present theory may be regarded as an effective scatter-
ing amplitude per unit surface area.

If kK = + im, another type of solution of Eq. (16) may

exist. In that case Eq.(20) becomes

Wia) = A, (26)
where A is an arbitrary constant. By applying the bound-
ary condition at z = = to Eq. (26) we see that a neces-
sary condition for the existence of a nontrivial solution
of this type is that Re « = 0. Moreover, the vector k for
this case must satisfy the equation

(B2 — E2)V/2 = €2K(K, k). 27
(Here the square root is defined so that it has nonnega-
tive real part.)

If Rek > 0, the solution given by Egs. (15) and (26) re-
presents a surface wave, i.e., a wave whose amplitude
decreases exponentially with distance from the boundary.
We shall consider this type of wave in more detail in the
isotropic case.

A. The isotropic case

Let us assume now that the function u(x, y) is statis-
tically isotropic, so that the correlation function can be
written R(£, n) = R(p). Then the angular integration in
Eq.(19) can be carried out, after which the expression
for K becomes

K(k, Bg) = f0°° eikf’"{[m‘lR(p) — k2p71R ()} (k)

+ 2km?R(p)Jy(kp) + k20[0"IR (0)]'J4(kp)}dp.  (28)

Here J, denotes the Bessel function of order n, By
making use of known relationships involving derivatives
of Bessel functions, we can write Eq.(28) in the alternate
form

Kk, ko) = [ e ([mAR(p) — k2p"IR (o)} ()
— k{2m 2R (p) + [p"1R'(0)]'} J,(kp) + K2p[p~1R'(p)]’
X Jy{kp))dp. {29)

Equation (28) shows that K, and therefore «, depends
only on the magnitude of the vector k. In this case, then,
C, is independent of the direction of propagation.

We can now solve Eq.(27) by assuming a solution of
the form
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o0
2=2 enk®)
n=Q
where 2@ = k. Upon substituting Eq. (30) into Eq. (27),
expanding in powers of ¢, and collecting terms in like
power of €, we find that (¥ = @ = p® = 0, while £ @
is given by

(30)

[2kok @112 = K (R, k). (31)
Hence, if ReK(k, k,) > 0, a surface-wave solution exists.
By inserting the expression for #% obtained from Eq.
(31) into Eq. (30), we find that

ka = ko + (€4/2k)K2(ky, k(), (32)
where k4 is the horizontal propagation constant of the
surface wave. The corresponding value of « is obtained
from Eq.(18) and is given by

Kx = €2K(kg, k). (33)
In deriving Eqgs. (32) and (33) we have neglected higher-
order terms in e.

B. Long waves

We now assume that k,/ < 1, where [ is the correla-
tion length of the boundary roughness. We assume also
that k is at most of order k,. Then we can get an
approximate expression for K(k, k,) by expanding the
term e Fo¥ , as well as the terms involving the Bessel
functions, in Eq. (28) in power series and integrating
the first few terms. The result is

K(k, ko) = k2N, + (k§ — 3k§k2 + k)M,

+ ik3(kZ + $R2)M, + O(kS), (34)
where
0
Ny=— fo p 1R (p)dp (35)
and o
M, = ‘[0 PR (p)dp, =012, (36)

The value of C, for this case is obtained with the aid
of Egs.(18),(23), and (34). Upon dropping terms of
order k§, we get

C, =1—2e2k§M (1 + 35 sin2x) secx + 2i€2k

X [N, sin2x + kZMy(1 — § sinZy + & sinty)] se(c3>,g7.)

From Eq.(37) we find that, to lowest order in ¢,

IC,| = 1—2e2k§M (1 + 5 sin2y) secx. (38)

In Appendix A we show that M, = 0. Here we shall
assume that M; > 0, which is the case for most correla-
tion functions of interest. As a consequence, we see from
Eq.(38) that |C,_| < 1, i.e., the amplitude of the coherent
wave is diminished upon reflection from the boundary.
This is the result of scattering of energy out of the
coherent wave by the boundary roughness. We see also
from Eq. (38) that this effect increases with y, i.e., the
loss of coherent energy upon reflection increases with
the angle of incidence.

Equation (38) shows that |C, | increases as &, de-
creases with x fixed. Thus, at any angle of incidence,
longer waves are reflected more coherently.

We show also in Appendix A that both M, and N, are
positive. Hence, we see from Eq. (37) that ImC, > 0,
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and therefore that the coherent wave undergoes a phase
retardation upon reflection.

We can get a condition for the validity of Eq. (37) as
follows. We introduce 7, the rms boundary roughness,
which is defined by

h2 = €2R(0); (39)
also, we note that

M, =O0[I"1R(0)], n=0,1,2""-, (40)
and that

Ny = O[F1R(0)]. (41)

We now use Eqs. (39)—(41) to estimate the magnitudes
of the terms occurring in Eq. (37), and note that the con-
dition C, ~ 1 is necessary for the validity of the per-
turbation analysis leading to this equation. Thus we
find that Eq. (37) is valid only if

koh2/1 <K cosX. (42)
Hence we must have
koh2/1 < 1. (43)

Moreover, Eq. (42) shows that the formula for C, given
by Eq.(37) is not valid at incidence angles too near
grazing, i.e., for cosy S kyh2/l.

We showed previously that a surface-wave solution
exists if ReK(k, ky) > 0. By setting 2 = k; in Eq. (34)
and neglecting terms of order £§ we find that

K(kg, ko) = 3kEN + 1 kM, + 5 ik3M,. (44)
Equation (44) shows that ReK(k,, k) > 0; hence, a sur-
face-wave solution exists in this case. The horizontal
propagation constant k4 of the surface wave is obtained
by substituting Eq. (44) into Eq. (32) and neglecting terms
of order k7. The result is
by = ko[l + €N RR(EN, + wMokE + 5 iM k3)). (45)
With the aid of Eqgs. (15), (26), (33), (44), and (45) we see
that the surface wave propagates at a slight downward
angle toward the boundary, with a speed slightly less
thar the free-space propagation speed. Since the propa-
gation speed depends on k(, this type of wave is dis-
persive. Also, Eq. (45) shows that the amplitude of the
surface wave decreases with horizontal propagation
distance. Again, this is the result of scattering of
energy out of the coherent wave by the boundary
roughness.

A necessary condition for the validity of the perturba-
tion analysis leading to Eq. (45) is that kx =~ k,. Thus,
by applying Eqgs. (39)-(41) to Eq. (45), we see that the
condition given by Eq. (43) is also necessary for the
validity of the surface-wave analysis.

C. Short waves

We consider now the case in which %,/ >> 1. We shall
study first the system of incident and reflected waves.

We begin by substituting the integral expression
Jokp) = L [27 gikvcoso gp (46)
o 27 °0

for the Bessel function into Eq. (28) and reversing the
order of integration. Next we use integration by parts
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to simplify some of the resulting integrals with respect
to p, after which Eq. (28) can be written
1 2n
K(k, k) = 57 jo {{m? + (ky + k cosb) k cosb]2 Pk, + k cosf)
+ k2 sin20Q(k, + k cosd)} d6 — 3 ik,k2R(0). (47)

Here
PQ) = [~ et**R(p)dp, (48)
Q) = — [ eiNp IR (p)dp. (49)

We now assume that k, as well as &, is large, and
that &y £ B = O(ky). Then the term &, + & cosg in Eq.
(47) is of order ky; hence we can substitute for the func-
tions P and @ in this equation their respective asympto-
tic expansions for large values of the argument. These
expansions are obtained from Egs. (48) and (49) by suc-
cessive integration by parts, and are given by

P(X) = iR(OA"1 — iR"(O3 + O(x-9), (50)
QM) = — iR”(0A"1 + O(A-3). (51)

Upon substituting Eqgs. (50) and (51) into Eq. (47) and in-
tegrating over 6 we obtain, after some algebra,

K(k, ko) = i{R(0)(kE — k2)3/2
~R"(0)(k3 — $k2) (k3 — k2)"1/2 + O(kgl)}. (52)

We can get an expression for C, by using Eqs. (18),
(23), and (52). In terms of the incidence angle it is

C, = 1— 2€2[k3R(0) cos2x — R"(0)(1 — 3 sin2y) sec2y].
(53)
Here we have neglected terms of order k2.

We see from Eq.(53) that, to this degree of approxi-
mation, C, is real. Thus, short waves reflect with no
phase shift. We see also that |C,| < 1, which shows
that, as in the long wave case, coherent energy is lost
upon reflection.

The presence of the term sec2y in Eq. (53) shows that
this equation is not valid for incidence angles too near
grazing, i.e., for cosx S (k,!)"1/2. Away from these
angles, however, we can neglect the term involving
sec2y, after which Eq. (53) can be written

C, =1—2k2h2 cos?y. (54)

This expression for C, is identical to the one obtained
by Ricel5 for the corresponding electromagnetic pro-
blem. It also agrees with the first two terms of the
expansion in powers of 2y% cosy of an expression for
the reflection coefficient obtained by Tolstoy and Clay16
using the Kirchhoff approximation.

The condition C, =~ 1 is necessary for the validity
of the analysis leading to Eq.(54). Hence we must have
koh << 1. But since 2,/ >> 1 for short waves, we see
that a necessary condition for the validity of the short-
wave analysis is that

h/1<< 1, (55)

i.e., the characteristic surface slope must be small,

As we have already noted, Egs. (53) and (54) are not
valid at incidence angles too near grazing. In order to
consider propagation at such angles we turn now to the
surface-wave analysis. The existence of a surface wave
depends, as we have seen, on the sign of ReK(k, #,).
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For the case of short waves, K(k, k,) is found by setting
k = kq in Eq. (28) and using the results of Appendix B

to evaluate the resulting integrals approximately for
large k. The result is

K(kg, ko) = E3[1(1k)1/2(1 + §)N, + O(kgl)], (56)
where

N, =— fo p~3/2R"(p)dp. (57)

It is shown in Appendix A that N, is positive. Hence, Eq.
(56) shows that ReK(k, k;) > 0, and so a surface-wave
solution exists in this case.

The horizontal propagation constant ks for the sur-
face wave is obtained by substituting Eq. (56) into Eq.
(82), after dropping the term of order kgl in the brack-
ets in Eq.(56). The result is

ki = ko + i€4(N2/16m)k3. (58)

Equations (15), (26), (33), (56), and (58) show that the
surface wave has the same properties as in the long-
wave case, except that here its horizontal phase speed
is equal to the free-space propagation speed.

A necessary condition for the validity of the analysis
leading to Eq.(58) is that %4 = k. By applying Eq. (39)
to Eq. (58) and noting that

N, = O[I'3/2R(0)),

we find that the condition given by Eq. (55) is also
necessary for the validity of the surface-wave analysis.
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APPENDIX A
Here we show that M, > 0 and that M, = 0, where,

forn=0,1,2,+--,

M, = f: rRR(r)dr . (A1)

We show also that both Ny and N, are positive, where

o
Ny=~— fo 1R "(r)dr, (A2)

0
N, =— fo r3/2R (v )dr. (A3)
We assume that the correlation function R is such that
these integrals, as well as any others appearing in the
following analysis, exist.

We begin by introducing S, the Hankel transform of R,
where

S(s) = [ ROV rs)r, (A4)
RO) = J sS(s)dotrs)ds. (A5)

Since S(s) is the Fourier transform of a correlation
function, it is nonnegative. Hence, we see immediately
from Eq.(A4) that

M, = S(0) = 0. (A6)
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To show that M, > 0, we first define the function
pla)(a > 0) by
00
play=J, e wRE)r. (AT)

Next we substitute Eq. (A5) into Eq. (A7) and reverse
the order of integration. This yields

pay= [

0

o o)
sS(s) fo e~ J \(rs)drds. (A8)

The integral over 7 in Eq. (A8) is absolutely convergent,

which justifies changing the order of integration. Upon

evaluating this integrall? we get
pla) = fo s(a2 + s2)1/25(s)ds. (A9)

If we now let & — 0 and use the Lebesgue convergence

theorem,18 we obtain from Eqs. (A7) and (A9)
My = [ S(s)ds. (A10)

Since S can not vanish identically (unless R does), Eq.
(A10) shows that M, > 0.

To show that N, > 0 we assume that R(r) has a con-
vergent power series expansion in some interval
0 =% = c¢,c > 0. Then since R is an even function we
have, for 7 in this interval,

o0
R(r) =2, a,,rnr. (A11)
7=0
We assume that ¢, = 0, which implies that a4, < 0.
Now for any & > 0 such that b < ¢, we can write
b o
Ny =~ [O 1R "(r)dr — fb r1IR'(r)dr. (A12)

We can evaluate the first integral on the right-hand
side of Eq. (A12) by substituting for R its power series
expansion and integrating term by term. This gives

2n-1
a,,b%n-1.

b S 2n
v R '(v)dr = A13

fo *) 2 2n — 1 (A13)

We can transform the second integral on the right-hand

side of Eq.(A12) by integrating by parts. This yields

ST Ry = — 07IRG) + [T R, (A14)
Now R (r) = R(0); hence we can write

§ reredr RO [ r2dr =57 1R(0). (A15)
Then from Eq.(A14) we have

[7 v 1R @)dr < b1 [RO) — R()). (A16)

We now use the power series expansion of R [Eq. (A11)]
to substitute for the term on the right-hand side of Eq.
(A16), after which this equation, together with Eqgs.
(A12) and (A13), shows that
&, Aon
N, =—2,
0 21 2n— 1

p2n-1,

(A17)

Since a, <0 we can write Eq.(A17) in the form

&, uZn/aZ
—a = Z ph2n-2)] Al8
Ny z=—agd <1+r§2n_1 ) ( )

We now choose b so small that
i a2n/a2
n=2 Zn -—_ 1

after which the result follows.

h2n-2 .< 1,
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Note that the same result is obtained if a, = a4, =
*t=ay;=0;j=1,and a,,,, < 0.

A similar argument shows that N; > 0.

APPENDIX B

In order to obtain the short-wave approximation of
K{kg, k) from Eq. (32), it is necessary to evaluate in-
tegrals of the form

[ee]
I :fo

for large k,, withn = 0, 1, 2. Here J§ is the nth deriva-
tive of the Bessel function of order zero, and the function
D(r) is assumed to be such that all the integrals appear-
ing in the analysis exist.

e D) (kgr)dr (B1)

We can transform the integral of Eq. (B1) by substi-
tuting for J$» the expression

=" o
J‘é"(k”) = —— e ikr c0s6 cos”Hdl
71 0
(we drop the subscript on k) and reversing the order of
integration. This yields
(=)=

T

Jo (8 cosnaas, (B2)

where
OENN

We note that
£(0) = f°° D(r)dr

0

for all k; whereas if & is large, f(8) is small for 8 > 0.
Consequently, we expect that, for large 2, most of the
contribution to the integral of Eq. (B2) will come from
the immediate neighborhood of 8 = 0. This suggests
using a method similar to the stationary phase method
to evaluate this integral.

exp[ikr(1 — cosf)|D(r) dr. (B3)

We begin by writing Eq. (B2) in the form

[=[(= /a)I, + I 5), (B4)
where ,

=17 £(6) cosman, (B5)

I = j:/z £(6) cos64do. (B6)

Now if 7/2 = 6 < 7 then 1 — cosf = 1. Hence in this in-
terval we can get an asymptotic expansion for f(9) by
integrating by parts in Eq. (B3). This expansion shows
that

f(8) = O[k1(1 — cosf) 1]
in this interval, and therefore [from Eq. (B6)] that
12 = O(k_l)- (B7)

We consider next the integral 7,. We introduce the
variable s, defined by

s2=1—cos8, 0=0=<m1/2,

and write Eq. (B5) in terms of an integral over s. This
yields

1
I = 21/2 fo (1—s2)%(1— 1s2y1/2g(5)ds, (B8)
where

gls) = [ s D(r)ar. (B9)
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By expanding (1 — s2)* and (1 — 352)"1/2 in power
series we see that,for 0 =s =1,

(1—s2)»(1— 1s2)1/2 = 1 + s2p(s), (B10)

where p(s) is continuous in the interval [0, 1]. Hence we
can write Eq. (B8) in the form

1 1
I =212 (fo gs)s + J, sZp(s)g(s)ds) . (Bl
Integrating by parts in Eq. (B9) shows that g(s) =
O(k~1s72), and therefore that s2g(s) = O(k™1).
Consequently,
1
JJ s2p(s)gls)ds = O(k™1). (B12)
We now introduce {, a new variable of integration,
defined by {2 = ks2. In terms of { we have
1 kl/2
jo g(s)ds = k1/2 fo n(t)dt, (B13)
where
® e
nty = [, e D). (B14)

Equation (B13) can be written
1 .00 0
S, als)ds = k12 (fo n(Hdt— [ . h(t)dt> . (B15)
2
The first integral on the right hand side of Eq. (B15)
can be evaluated by substituting for A(f) from Eq. (B14),
reversing the order of integration, and noting that the
resulting integral over { is tabulated. This yields
o0 o0
S, modt = (/821 + 9 [ rV2D0r)dr.  (B16)

The second integral on the right-hand side of Eq(B15) is
easily shown to be of order £ 1/2 by first integrating by
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parts in Eq. (B14) and then substituting the resulting
expression for 2(?) into the integral. Thus we find that

1 0
J, gls)ds = (nBR)V2(1 + i) [ 7 V/2D@)ar + O(kY).
(B17)
We now collect our results [Eqgs. (B7), (B12), and
{B17)] and, with the aid of Eqs. (B4) and (B11), we obtain
finally

I = (—)"(4nk) 1/2(1 + §) j(:o r12D(r)dr + O(k™1).
(B18)
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We construct a one-dimensional fermion model (rigorously reducible to a mean field theory). We
show that this model exhibits a second order phase transition associated with a spontaneous
breakdown of continuous space translational symmetry in favor of a periodic symmetry. However,
Landau and Lifshitz conjectured that a phase transition in which there is a spontaneous breakdown
of Euclidean symmetry in favor of a crystallographic symmetry must be a transition of the first
order. Thus we obtain a counterexample to this conjecture in the case of one dimension.

1. INTRODUCTION

It has been observed experimentally that the solid~
liquid phase transition is always a transition of the first
order. In particular, this transition is accompanied by
a non zero latent heat. Furthermore, the solid~liquid
transition is always associated with a spontaneous break-
down of Euclidean symmetry in favor of a crystallogra-
phic symmetry appropriate to the solid phase. It has
been conjectured theoretically by Landau and Lifshitzl
that a phase transition which may be characterized by
a symmetry breakdown of this type must be a transition
of the first order.2 In this paper we put the above con-
jecture to the test by examining the equilibrium states
of an exactly solvable one—dimensional fermion model.
Our work is based on a rigorous treatment of the model
using the C*-algebraic approach3 to quantum statistical
mechanics. As the mathematical formulation is rather
abstract, we will present here a heuristic definition of
the model, the rigorous treatment being deferred to the
next section. The model is essentially an infinite vol-
ume generalization of the model defined by the following
finite volume Hamiltonian

Hv:HO,U+HI,v? (1)

where H , is the free Hamiltonian for the finite volume
v, and the interaction Hamiltonian H, , is a “truncated”
form of the following

g/v | [ WHx)ut(p)ezi tr-9u(x)¥(y)dxdy, (@)

where g is a negative coupling constant, ¥* and ¥ denote
the Fermi annihilation and creation operators, respect-
ively, 2 # 0 denotes the Fermi momentum. Crudely
speaking, the word “truncated” means that only those
fermions with momentum within a region close to the
Fermi surface interact, Motivated by Haag's4 treat~
ment of the B.C.S. model we will actually consider an
infinite volume generalization of the model determined
by the following Hamiltonian, rather than that obtained
from H , of equation (1),

H, ,=H.o,+gQ, [, ¢ixviy (x)dx
+2Q* [, ¥rx)v2e (v)dx, (3)

where this Hamiltonian is to be regarded as an operator
with dense domain in some Hilbert space 9., correspond-
ing to-the representation 7. Hn’o,,, represents the free
Hamiltonian and @, is defined as follows:
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Q, = lim L [, Wix)p2e,(x)dx (4)

on a suitable dense domain in the representation space.
The representation 7 is to be chosen such that this limit
exists. v! and v2 are “truncated” forms, in the above-
mentioned sense, of exp(2iK yx) and exp(— 2K px),
respectively.

Following arguments similar to those used by Haag*
for the B.C.8. model, we see that @ ; belongs to the
center of the von Neumann algebra? #(%)”, where A
denotes the algebra of observables for the system. We
emphasize at this point that the foregoing heuristic
description was designed to give some insight into the
abstract mathematical definitions of the next section. In
particular, we have set this description out for finite
volume, whereas the rigorous treatment will be given
for an infinite volume; at no stage will we resort to the
so-called thermodynamic limit.

It may be seen that our model is in some sense simi-
lar to the one-dimensional electron—phonon model
studied by Frohlich® in connection with the theory of
super conductivity. The manner in which we formulate
our model is such that it reduces rigorously to a mean
field theory.® The amplitude of this mean field essent-
ially plays the role of an order parameter. Further,
the mean field is periodic. We shall adopt the pragmat-
ic point of view that the equilibrium states for our
model are determined by the Kubo—~Martin—-Schwinger
(K.M.S.)7:8 conditions. We mention here that these con-
ditions are a natural generalization to infinite volume
of the usual finite volume Gibbs equilibrium presciption.
As a result we shall show that our model exhibits a
phase transition of the second order associated with a
spontaneous breakdown of continuous space translation-
al symmetry in favor of a periodic symmetry. The tran-
sition is of the second order in the sense that the above-
mentioned order parameter tends continuously to zero
as the temperature tends continuously to the critical
temperature from below. Thus we provide a counter
example to Landau and Lifshitz's conjecture in the case
of one dimension.

Our paper is set out as follows; in Sec. 2 we present
the mathematical definition of the model. Our formula-
tion leads to a “self-consistency” equation for the order
parameter. In Sec. 3 we discuss the solutions of this
equation. We also prove the existence and determine
the order of the phase transition. Section 4 contains
our conclusions. Appendix A is devoted to the mathema-
tical calculations leading to the self-consistency
equation.

Copyright © 1974 by the American Institute of Physics 324
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2. THE MATHEMATICAL DEFINITION OF THE MODEL
PRELIMINARIES

Definition: Let X be a complex Hilbert space with
inner product given by ¢...,...)

Then we define a representation of the canonical
anticommutation relations (C.A.R.) over JC to be a
linear mapping

f - ‘Ii(f)yvf E.}C,

from 3 onto operators ¥(f) on a Hilbert space $, such
that

{8(5), (@)}, = {¥(N)*, ¥(g)*} =0

and
{\I’(f)*y \Il(g)}+ = <f’ g),

In the following we shall take X to be single particle
Hilbert space £2(R) of square integrable functions on
the real line R. In particular, we have the usual Fock3
representation of the C.A.R.over X, i.e.,

= e p(f),

where the ¥ (f)* and ¥ ,(f) are operators satisfying
the above anticommutation relations on the Fock-
Hilbert space . Now define J to be the algebra gen-
erated by polynomials in the ¥ .(f)*, ¥,.(g),Vf, g € 5.
We then take as C*-algebra of observables ¥, the norm
closure of 9.

vV, g e X.

Y € X,

Space Translations

Define y ¢ R — U, a mapping of the additive group of
reals into the set of unitary operators on 3 by the
following:

ny(x):f(x_y)y vaJC, xnyR-
Define y € R — a,, a mapping of the additive group of
reals into Autdl by

a (¥ (/) = ¥5(U,[), Vfex, yeR
We may extend o to a one-parameter group of strongly
continuous automorphisms of %A in the usual manner. We
shall denote this extension by & also.

We now present several definitions which we will re-
quire in order to define the dynamics for our model.

Definition: We define the free single particle
Hamiltonian H; on the single particle Hilbert space as
follows

N R
Hyf(R) = w(k)f (k), Vf < S(R),

where §(R) denotes the Schwartz space of infinitely
differentiable functions of fast decrease on R, ~ denotes
Fourier transformation, and w(k) = Clk|,0 < C < c.

It may easily be shown that H, is essentially self adjoint
on $(R) and so possesses a unique self-adjoint exten-
sion; denote this extension by fl, also. We shall denote
Hy — ju by H,, with y the chemical potential in the range
(— o, k], k5 the fermi-momentum, k, > 0.

Definition: Let @ € C (the complex plane K, € R*,
KF> O’Gl = (0, 2KF]’ Gz = (— ZKF,O], and let Xcl, XGZ
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denote the characteristic functions for the regions G,
and G,, respectively. We define the bounded self-adjoint
operator v? on Jas follows:

TRK) = @F &) + QV2F(K)
with
TI7(K) = xo (KIF(K — 2K 1),

~

VE(K) = x, () (K + 2K ),

(5)

)

Vfed

where  denotes complex conjugation. These definitions
make precise what we have previously referred to as
“truncated.” It follows easily from the definitions that

U, Vi=e2iEpViy,
and

Usz

e2iK IV2U . Vy < R.

Also if y — @, a mapping of R inio C is defined by

Qy = e_ziKFyQ,
then

. ®)
U,veu_, = Ve,

Definition: We define H , to be the self-adjoint
closure of H, + gV?@with g € R, @ € C. We shall also
define the mapping ¢ — T¥ of R into the unitary opera-
tors of ¥ by

TR = exp{iH 41},

Notation

t € R.

Denote by I’ the set of all bounded open measurable
subsets A of R and by V(A) the Lesbegue measure (vol-
ume) of the region A.

The model

Having specified the observables it remains to speci-
fy the dynamics and a set of physical states; in our case
equilibrium states. We will define the dynamics and the
equilibrium states in a “self-consistent” manner. We
do this by defining a set of states & which satisfy the
following three conditions. Then we evaluate the set &
explicitly and will interpret § as the set of equilibrium
states for our model.

The set §: Let & be the set of states for the C*-
algebra A(3C) which satisfies the following three con-
ditions for temperature 81 and chemical potential
w, i = ¢Ky. Denote by (9, 7, ©,) the G.N.S.3 triple
associated with w.

(1) There exists a strongly continuous one parameter
group 7, ! € R of automorphisms of 7 (A(3))”, the
bicommutant of® 7 (9(30).

@ the canonical extension of w to 7_(A(7C))” must
satisfy the K.M.S. conditions with respect to 7, at
temperature 871, 8 > 0, and chemical potential
U, p =Ky, cand Kg # 0.

Letw = J w,du, be the central decomposition of
w and let (b, 7, @, ) denote the G.N.S. triple
associated with w . It may be shown that @, is an
extremal K.M.S. state. Now define the mapping

t — 7, of R into Autnwo (B (5) by

(2)

(3)

TAY () = ¥ (TRof),  Vf € %,

with ¥ (f) = nwo(\IfF(f)). Our third condition is that
7, for the representation 7 , , coincides with %, on
(e}
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T, (QI(JC)) It then follows from Condition (2) that we
may uniquely extend T: tom, (%[(JC))” Furthermore,
to complete Condition (3), we require that

Q,= limit 20 W (¥ p(f ) ER(VIf L)),

Vayo V(A) «

(1)

the limit being independent of the choice of complete
orthonormal basis {f } for the region A, A € T

Conditions 1 and 2 essentially correspond to our
characterization of w, w € &, as an equilibrium state.
Condition 3 corresponds to our formulation of the dyna-
mics for the heuristically defined Hamiltonian of equa-
tion (3).

Condition 3 tells us that the time evolution for the
representation 7, is a quasifree time evolution in the

2Kp

Qy=9, [

sinhBe(K)2 + g2|Q |2]1/2
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sense of Rocca—~Sirugue—Testard.10 A simple applica-
tion of the techniques developed in the paper by Rocca-
Sirugue-Testard10 leads us to the following result:
Vf,gex

w (¥ () ¥R(8) = (f, GH g )2), (8)

where G(HQU) =[1+ exp((:?HQO)]'1 (the fermi-factor).

Using Eq. (8) we may re-write Eq. (7) as

Q= 25 (S o GUH G IV ) (9)

lim
V(a0 V( A)

with {f | a complete orthonormal basis for the region
A. In Appendix A we express the RHS of Eq. (9) explicit-
ly as a function of @, with the consequence that Eq. (9)
may now be regarded as an equation for @ .

Thus from Appendix A

where €(K), = 3{e(K) + (K — 2K )}, €(K) =

3. THE PHASE TRANSITION

0 {coshBe(K), + coshf[e(K)2 + g2|Q ,12]1/2}{e(K)2 + g21Q,12]1/2 dK,

(10)

CIK| — u,and y = — 2K p/g,i.e.,y € R" when g € R".

We now examine the solutions of Eq. (10). Explicitly, Eq. (10) reduces to

— — fZKF

Sinh(C2(K — K 5)2 + g2Q |2)"2

@y =€,

If we now choose y, = CK g, then

fo tanhg/2(C2y2 + g2|Q |2)"*

2= Jo” ~cay v galq, 10"

dy. (11)

Equation (11) has the trivial solution @ ;, = Q@ o = 0, which
is valid for all 8. We now seek a nontrivial solution. To
do this we define the function F as

F:R"
with
K
F(g,m) = [

X R — R*

7 tanhp/2(C2y2 + g2n)1/2
(CZyz 4 gZ'rI)l/z

dy, B,nE R,

There will exist a nontrivial solution to Eq.(11) if the
function F attains the value y/2 for suitably chosen j
and 1. To show that such a nontrivial solution exists, we
list five properties of the function F that will make this
apparent.

(1)

F(B, 1) is separately continuous in 8 and 7.

(2) F(,n)=0, VneR.
(C + V€2 + g2K%.1n)
(3) F(«,n ==In Cakomi2 , then F(=, () = o,
(4) F(B, n) is a monotonically increasing function of 3,
v, B € R.
(5) F(B,n) is a monotonically decreasing function of 7,
v, B € R,

Properties 2, 3, and 4 imply that there exists a 8,
B, € R, §,#0 such that

F(B,,0) =r/2
and that this equation uniquely defines 8,. Furthermore,

2 to 5 imply that if 8 =< 8, then F(B,n) =v/2, Vn € R*
so that we only have the trivial solution for Eq.(11).
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d
0 {coshB(CKy — u) + coshP(C2(K — K z)2 + g21Q,12)V/2}(C2(K — K z)2 + g2|Q |2)1/2

2

Now, if 8 > B, properties 2 to 5 imply that there exists
a unique nontrivial solution to the following equation
for n

F(B, 77) = 7/21

denote this solution by n{(8).

Thus, Eq. (11) has a unique nontrivial solution for 1@ 1.
Then using Properties 1 to 5 we see that the mapping

B8 — n(p) of R* —» R* is continuous with the additional
property.

lim n(B) = 0.
B—’B;

We also have that n(8), 8 = 8,
ing function of g, with

(12)

is monotonically increas-

max n(g) = n(x),
B ZBC

where 7(*) is the unique solution of the following
equation:

202

_1 (e B8

v/2=F fo <y aier

n(°°)> l/zdy-

Thus we have shown that Eq. (11) has a unique non-

trivial solution for |Q,| if 8 > B,; furthermore, the

solution is independent of ¢. Therefore, we have
Q,= Q expia(o), with a(o) € R, (13)

where @ is the solution of Eq.(11) for given 8, B > B..

Equation (13) implies that we may put the set {w_} into

a one-to-one correspondence with the unit 01rc1e S1,

The existence of a nontrivial solution to Eq. (10) demon-

strates that our model exhibits a phase transition with

critical temperature g;1. It follows from the foregoing
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that the transition is of the second order with § re-
garded as an order parameter. That this interpretation
is reasonable follows from the arguments leading to
Eq.(12). In particular, @ tends continuously to zero as
the temperature tends continuously to 871 from below.

We now enquire as to the action of space translations
on the states w,. In the proof of Eq. (8) one shows that
the w, are in fact quasifree and so to determine the
action of space translations we only need consider
the two point functions.

In particular,

aw (¥ () Ep(g)) = w(a (¥ p(f) Ex(2))
=</, UyG(HQo)U—yg> =/, G(HQo(y))g>
= wo(y)(‘I,F(f)*\I’F(g))’ Vf, g€ ch

where we have used Eq.(6) and @ ,(,, = ¢ Qe
the set {w_} is invariant under space translations but
not pointwise invariant. It is easy to see from the
above equations that the states w, are invariant under
a periodic symmetry with period 7/K 5.

4. CONCLUSIONS

We concluded after Eq. (13) that our model undergoes
a second order phase transition at the critical temper-
ature f;1. Furthermore, we have established the follow-
ing facts about the set of states §. Firstly,if 8 = 8,
& contains just one element, namely the free state
corresponding to @ , = 0. It may easily be seen that
this state is invariant under space translations.
Secondly, if 8 > B,, § contains many states. In addition,
we found that the set § was setwise but not pointwise
invariant under space translations. Thus we have a
spontaneous breakdown3 of continuous space translation-
al symmetry. We have shown that the extremal ele-
ments of the convex set § are however invariant under
a periodic symmetry of period 7/K ;. It is interesting
to note that for g > B, the set & contains only two space
translationally invariant states. These are the free
state corresponding to the trivial solution of Eq. (10),
and the following state w = K /7 [o/"F w, (,ydy

The situation we have described in the previous para-
graph demonstrates that our model exhibits a second
order phase transition associated with a spontaneous
breakdown of continuous space translational symmetry
in favour of a periodic symmetry. Thus we have estab-
lished a counter example to Landau and Lifshitz's con-
jecture in the case of one dimension.

We point out that our methods are not restricted to
the particular form of “free” Hamiltonian we use. In
fact, we have established the existence of the phase
transition and the symmetry breakdown for a wide
class of “free” Hamiltonians; this class includes
w(K) = K2/2. However, it then becomes more difficult
to determine the order of the transition, in particular
to obtain Eq. (12).
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APPENDIX A

We evaluate

. 1
Vl(i\r;lao WA) % (fa, G(Hu)fo)-

Firstly we shall consider

G(H )Vif(x), withf € X.

Definitions: Let

gHK)=eBx, Ke Gy, gHK) =e ks KeGy,
=0, K ¢ G, =0, K &G,
g2K) = ks, K €G, gHK)' =eE's, K&G,,
=0, K & G, =0, K & G,,

withK' =K — 2K, and K" = K + 2K .
Then

GH )VIf(x) = fc, ZIE) @ﬂx — 2K )dK

= (g}, C@ ) 3k 1)

with Fp , = FUK — 2K;) and G Y (K) = GUHDFK),
Vf e 1.

Casel: Ke G
Definition 1.a:

A, = im_.;r_f_(f{_) t [He(K) — e(K")2 + g21Q,12]1/2

and
K%: )\%_ if

— 1 3
_)\K’ if

Ke (0,Kz]
K& (0,K,]
Definition 1.b:
¥, = gHK) + AY{K)gL(K)',
where _
AL — e(K)~ 89,

ALK) = 2 =
89, Ag— eK")

Case II: K< G,.

Definitions 2. a:

€(K) + €K")
)\;{i = _—___2-__-__ + [5(5(1{) — e(K"))2 + g2 (Qo|z]1/2
and
AR =213 if

=23 i

Ke (~Kg,0]
K& (— Kg,0].
Definition 2. b:
¥, = A2(K)g2(K) + g2(K)",
where
A2 — e(K") gQ4

B S VepTSY
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From the definition of the g functions we see that

VOsglK) = g8 g K), Vrl(K) = g9 gUK),

Tax2(K) = 60 22(K)", Toog2(K)" = 29 22(K),
with

TeF(K) = VOof(K), Vf € %.

A simple calculation verifies that
A%, =2¥,, KeGy,
A, ¥, =23¥%,, Kc G,

It follows simply from the above definitions that
¥, = glK) + A2(K")gH(K)', Ke G;.

Therefore,
gLHUK) = (A2(K")¥y — ALK)¥  NAZ(K') — AYK)) L

It was our desire to invert the relation between the ¥'s

and the g¢'s that led to the particular choice of sign in
the Definitions 1a and 2a.
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CUH g UK)

= {A2(K")G(A L) ¥y — AUK)G(A %) ¥ [A2(K') — AYK)] L
= {{A2(K")G(\}) — AYK)G(A %) g 1K) + A2(K")AL(K)
x {GAD) — G % )gHK) HAX(K") — AYK)] L.

Therefore,
(CH e Fox,) = S, EEGOH — COZ ) e = /(")

+ the other term,

where

E(K) = A2(KAL(K)[A2(K') — ALK)] L.

Therefore,

Fo GV Y = [ [Ff 0], 860D

— G(Ag)}e K GIdK] 4y
+ the other term.

Now

Z (o CHIVY Y = [ ([ o, SENCOD — G0} dK)ax

+ the other term.
Then

—— 2 ([ GHIVI Y
= g, EEAGOD — cOZI}aK

lim
V(A y-0 V( A)

the other term going to zero in the limit.
We have

sinhf(e(K)2 + g21Q,12)1/2dK

Consider now G/(H\a)g}(K) We have
— 16(L) — G}
fGl EENGAP — GOgItaK = — f rq, i“(rl)*_—hf‘#)}
_ Ty 2Kp
=%, fo

with e(K), = 3[e(K) £ €(K — 2K )], €K) = CIK| — p.
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A topological description of Killing vector fields as well as conformal Killing vector fields on a
2-space—time is given, and the block diagram extension technique is generalized.

1. INTRODUCTION

Studies®~® of static timelike 2-surfaces have contrib-
uted much to the understanding of some physically im-~
portant stationary space—times such as the Kerr—
Newman family. s This paper aims at a unified qualita-
tive theory of stationary and conformally stationary
timelike 2-surfaces.

In Sec. 2 the necessary preliminaries, notably some
ideas from the qualitative theory of vector fields as
initiated by Poincaré, ® are briefly described and a re-
sult is proved which enables one to obtain the index of
a critical point®” in a simple geometrical manner. In
Sec. 3 a qualitative description of a general conformal
Killing vector field ¢ and its horizon® is given. It is
shown, for example, that the isolated critical points
of £, which are also bifurcate points® of the horizon,
are of a particularly elementary type and can readily be
classified, that £ has no homotopically trivial cycles,
and that horizon segments, which are also isolated if
they contain isolated critical points, cannot join critical
points of the same nonzero index. If ¢ is a Killing vecto:
field, each isolated critical point is a simple saddle,
and each arcwise connected component of the Killing
horizon can contain at most one bifurcate point, so that
horizon polygons do not exist. On the other hand, con-
formal Killing horizon polygons may exist.

In Sec. 4 these results are used to show that a con-
formal Killing vector field is structurally stable on each
disc in a 2-space—time M (in the sense of Andronov and
Pontrjagin®) if and only if each critical point is simple,
while a Killing vector field is structurally stable if and
only if each critical point is isolated.

In Sec. 5 a generalization is given of the well-known
“block diagram” extension technique.!~5

2. PRELIMINARIES

Let M be a connected orientable 2-manifold. Then the
bundle F(M) of frames over M has two connected com-
ponents and any two frames at p € M in the same com-
ponent of F(M) are related by a matrix transformation
with positive determinant. An orientation of M is a
labelling of these components by “+’ and “-", respec-
tively; thus one can speak of positive and negative
frames. Given a metric tensor g on M, the angle @ mod
27 that a vector v makes with a vector # is uniquely de-
termined, since g determines the angle up to sign,
while the sign in turn is fixed by the sign of the frame
(o, v).

An orientation of M also determines a concordant
orientation of the boundaries of all 2-cells in M as
follows. Let ¢ be a simple closed differentiable curve
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(i.e., a Jordan curve) bounding a 2-cell ¢ and consider
‘a parametrization S'— ¢ with corresponding tangent
field ¢ and unit inward normal # (i.e., # points info e,
where “into” is defined in terms of the exponential
mapping). Then ¢ defines an orientation of ¢ and one
says ¢ is positively oriented if at each point on é the
frame (¢,n) is positive. In well-known manner this
orientation of é now determines a unique positive
orientation of the boundary of any other 2-cell fin M,
even if f is not differentiable (in which case “oriented”
means simply “directed”).

Let AC M be an open set and consider a cell-decom-
position of the closure A, The positive orientation of
the boundary of each 2-cell in this decomposition in-
duces a unique positive orientation of the topological
boundary 4.

Let v be a vector field on M. The zeros of v will be
called c7itical poinis. A critical point p is simple if

i
det(a—v-> #0 atp.

Fpw 2.1)

Let J be a positively oriented Jordan curve bounding
a 2-cell and containing no critical points. Let J be
parametrized in the positive sense by 6 < [0,27] and let
a(8) be the angle that v makes with the tangent to J at
6. Since «(6) is determined up to multiples of 27, the
requirement that o be continuous on [0, 27] uniquely
determines the function A(8) = a(6) — @(0). Define the
index®" of J to be

i(J0) © (2m)tA(27) +1. (2.2)

The index is an integer and is independent of the orien-
tation of M. The index of an isolated critical point p is
defined by

i p;v) E iCsv), (2.3)

where C is a small Jordan curve about p enclosing no
other critical point except p. The index of p is inde-
pendent of the choice of C. A noncritical point is as-
signed index 0. The index of a simple critical point can
only be 0 or +1.% A simple critical point with index —1
is a saddle point.'® Bendixson'! showed that for a criti-
cal point p

p;v)=1+3(e -h), (2.4)

where e is the number of elliptic sectors and % the
number of hyperbolic sectors’ about . Poincaré®
proved that if J is a Jordan curve bounding a 2-cell
which contains isolated critical points p,«--p,, then

n

UT30) = 25 U pasv).

a=1

(2.5)
We shall now derive a result which is useful for
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evaluaiing the index of a critical point and which will be
used repeatedly in the next section.

Let (u,v) be a dyad of vector fields on an oriented 2-
manifold M and suppose each of # and v has only isolat-
ed critical points. Consider the open set

(2.6)

The degenerate boundary B is defined to be the topologi-
cal boundary of the closure of M,, i.e., B=M,. Since
(u,v) is degenerate on B, it can be partitioned

M,={peM:(u,,v,) is positive}.

B=CUB,UB_, 2.7
where C is the collective set of critical points of # and
U!

B,={peB-C:u,=10,}, (2.8)
and #,, 131, are unit vectors parallel to «,, v,, respec-
tively. It will be assumed that M, admits a triangulation
which induces locally finite triangulations of E, and B_.
Then each of B, and B_ is the union of a collection of
arcs in M, only finitely many of which intersect some
neighborhood of each p € M. Also, positive orientation
of B is well-defined so that the B, and B_ arcs may be
regarded as directed arcs.

Definition: Let J be a Jordan curve free of critical
points, transversal to B and bounding a 2-cell e¢. Let
B have positive orientation. Then the orientation degree
of J is defined by

¢(J) = (number of B, arcs leaving e)

—(number of B, arcs entering e). (2.9)

For a point p, define e(J) =¢(C), where C is a small
Jordan curve (as above) about p.

If (x,v) is degenerate only on B, then not only is B
independent of the orientation of M, but (unlike, for
example, positive orientation of a cell boundary) the
positive ovientation of B is also independent of the
ovientation of M. In general, of course, the degenerate
boundaries yielded by the two orientations of M may
not even be homeomorphic. However, one readily sees
that the orientation degree of J is independent of the
orientation of M.

If only B and the partitioning (2. 7) is known, one can
still determine ¢(J) correctly up to sign by simply di-
recting the B-arcs intersecting J alternately in and out
of the 2-cell ¢ as one proceeds around J. The sign in-
determinacy then amounts to an indecision as to which
of the two vector fields is # and which is ».

Lemma 2.1: Let J be as above. Then
e{) =i(J3v) - i(J5u).
In particular, for a point pc M,
«p)=i(p;v) ~ i p;u).

Proof: Let J intersect B, at points p, +--p_ and let
o be given by 8=06, #0, where J is parametrized by
6 < [0,27] in the positive sense. Then u and v are
parallel at p,. If 5(8) is the angle that v(#) makes with
u(6) at 6, one says v crosses u in the positive (respec-
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tively negative) sense at p,, if 5(9) is monotonically in-
creasing (respectively decreasing) on an open interval
about §=46,. It readily follows from (2.2) that'?

i(Jv) —iJ;u) =m —n,

where m and n denote the total number of times v
crosses # in the positive and negative sense, respec-
tively, at points in JN B,. Now consider an orientation
‘preserving homeomorphism % of a neighborhood of e
into the plane and choose the orientation on M such that
it agrees under %k with the standard positive orientation
of the plane. Then M, N J is the set of points on J for
which 6(8) mod 27< (0, ) and each B arc v is so orient-
ed that, in the planar picture, “M, lies to the left of y”
as one proceeds along y. It follows v crosses u in the
positive sense at p, if the directed B, arc y through p,
leaves e at p,, while v crosses u in the negative sense
if y enters e at p,. Hence €(J)=m —n. o

It follows that B, (and also B_, by symmetry) is the
union of arcs in M with endpoints in the critical set C.
For if p is a noncritical point, then by -the lemma,
€(p) =0, so that incoming and outgoing B, arcs may be
paired off. If M is compact, each arc has its endpoints
(possibly coincident) in C, whence :

0= 2 e(p)= 2 i(p;v)—pE i psu).

»cC pEC cC

(2.10)

Thus the fofal index of a vector field on M is a constant.
This constant is of course the Euler—Poincaré charac-
teristic of M.

As another application, consider a vector field » on

the plane of the form
= Gx) = +Flx,y) = 2.11)
x oy ?

where G has isolated roots. Then the dyad (u,9/0y) is
degenerate at the zeros of G, so B will consist of
directed lines x=c,, where each c, is some root of G.
Thus at most one of these lines passes through a given
point p, with one segment directed towards p, the
other away from p. Hence €(p)=0,+1 and by Lemma
2.1, the index of an isolated critical point can assume
only the values O or +1.

3. CONFORMAL KILLING VECTOR FIELDS

Let (M, ds?) be an oriented time -oriented 2-space—
time (or timelike 2-surface). Then M is parallelizable
since there exist future directed null vector fields / and
n with sign (I,n)=+1 everywhere, and c¢ach of / and n
is uniquely determined up to a positive factor. Let £ be
a conformal Killing vector field satisfying the conformal
Killing equations

gkt s T 8inkt i T 815 nE = 08iys 6.1

for some scalar field ¢. The [-horizon H, is defined by
H={peM:g,;t'V’=0at p}, (3.2)

and H, is defined similarly. These horizons are clearly
independent of the choice of / and n. Since ! and » are
nowhere tangent, the critical set of ¢ is precisely
H,NH, The set H=H,UH,, on which £ is null, is
called the Killing hovizon.®
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Proposition 3.1: Let £ be a conformal Killing vector
field on an oriented time-oriented 2-space-time, and
suppose £ has only isolated critical points.

(i) If 2 component X of the /-horizon contains a criti-
cal point, then X is a maximal integral curve of / and is
isolated. The critical points with nonzero index on A
have indices alternately +1 and -1 along A. Similarly
for the n-horizon. A component of the /-horizon inter-
sects a component of the z-hcrizon in at most one point.

(ii) None of I, n, and £ have homotopically trivial
cycles. In particular, no critical point is a center. 14

(iii) A critical point p of £ has no elliptical sectors
while the number of hyperbolic sectors may be 0, 2,
or 4.

(iv) The seperatrixes'® of a saddle point of £ are con-
tained in the Killing horizon, and no seperatrix goes
from a saddle to a saddle.

Proof: (i) Since I has no zeros there are local coordi-
nates {u, x} such that I =3/3x. Then

ds?=Edy® +2Fdudx, (3.3)
and one of the conformal Killing equations implies
E=Fu) 2 +glx,u) o . (3.4)
ou > ox

Hence the index of a critical point p of £ may assume
only the values 0, +1. Also

gijgilj:ny

so H, is locally given by f(x)=0. Thus H, is generated
by maximal integral curves of [, since these are locally
given by u=const. On the other hand, H, is also gen-
erated by maximal integral curves of £. Let X\ and n be
the respective maximal integral curves of / and n
through a critical point p, so that \CH, and nCH,,.
Since p is isolated there is a neighborhood V of p in
which H, and H, intersect only at p. Since 7 is trans-
versal to A at p and since [ has no critical points, the
integral curves of / intersecting the curve n N V will
trace out a neighborhood W of A. Then WN H, =1, for if
ge H,NWhbut g &, then the maximal integral curve

A, of I through ¢ is contained in H,, which is not possi-
ble since A, intersects n in V at a point other than p.
Moreover, A and n cannot cross at more than one point,
since the sign of (I,#) at adjacent crosspoints will have
to be opposite, contradicting sign ({,n)=+1
everywhere.

(3.5)

Now consider the dyad (I, £) with positively oriented
degenerate boundary B C H,. If A contains critical points
Po with nonzero index, it follows from the above and
Lemma 2.1 that A is an isolated connected component
of B, and the p, divide A into an alternating sequence of
B, and B_ arcs concordantly oriented along A. Conse-
quently, the orientation degrees €(p,) of the p, are
alternately +1 and ~1 along A. By Lemma 2.1, €(p,)
=i{p4;£) since i(p,;I) =0, so that the indices of the p,
alternate likewise.

(ii) If J is a homotopically trivial cycle of I, then
#(J,1)=1 and by Eq. (2.5), ! must have a critical point-
contradiction. Let J be a homotopically trivial cycle of
£. Then i(J;£)=1 and #(J;!) =0 so that by Lemma 2.1,
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the orientation degree of J with respect to the diad (I, £)
is e(J)=1. Hence J intersects BCH, so that JCH,,
since H, is generated by maximal integral curves of &.
Thus [ is tangent to ¢ along J, so J is also a cycle of
{-contradiction.

(iii) Suppose p has an elliptic sector. Then there is
an integral curve y of £ initiating and terminating at p
and such that y=y U {p} bounds a disc e. Since !/ has no
zeros any integral curve of [ entering ¢ must leave it
again, so there is an integral curve A not through p
intersecting y at least twice. Then sign (, £) is opposite
at adjacent crosspoints which implies (I, £) is degen-
erate at some point g#p ony, i.e., g€ H,; so that yCH,,
By (i) the loop ¥ is a cycle of [-contradiction. The num-
ber of hyperbolic sectors follows from the formula
(2.4) of Bendixson.

(iv) The seperatrixes of a saddle point p are precisely
the four integral curves of ¢ which extend to p (exclud-
ing the constant curve at p). From (i) it follows that p
is the intersection of isolated components X and n of H,
and H,, respectively, both being nontrivial curves gen-
erated by maximal integral curves of £. Thus AU7
must contain the four seperatrixes. If two saddles are
joined by a seperatrix, there would be adjacent critical
points on a component of H; or H,, both with index -1,
which contradicts (i). o

It follows from (i) that a null conformal Killing vector
field ¢ cannot have isolated critical points.

We now consider a Killing vector &, satisfying Eqs.
(3.1) with ¢=0.

Theorem 3.2: Let £ be a Killing vector field on a 2~
space—time. Each isolated critical point of £ is a
simple saddle.

Proof: The Killing equations imply
(Ff)u:_(Fg)x’ (36)

where the subscripts indicate partial derivatives with
respect to » and x, respectively. From Eq. (3.4),

ag!

det 327

=fu&s (3.7

Let p with coordinates {0, 0} be an isolated critical point
of £. From Eqs. (3.4) and (3.6),

oE!

fu=-8. det|z25) =—f7 atp, (3.8)

so that p is simple if and only if £,#0 at p. Suppose p is
not simple, i.e., f(0)=£,(0)=0, so that by Eq. (3.86),
F(x, 0)g(x, 0) = const, and since F has no zeros and
£(0,0)=0, it follows g{x,0)=0. Thus £=0 on the line
u=0, so p is not an isolated critical point. Hence p
must be simple.

For the dyad (/, £) the set M, is locally given by f <0,
so that the degenerate boundary B is locally given by
u#=0. Since p is simple, f,=—g,#0 at p so that f(x) and
g(x,0) change sign across u=0 and x=0, respectively,
and the sign changes are in the opposite sense. Hence
if f(u) <O for small >0, then g{x,0) >0 for small x >0,
so that by Eq. (3.4), the positive x axis near p is a B,
segment terminating at p, while if f(«) <0 for small
u <0, then the negative x axis near p is a B, segment
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terminating at p. In both cases €¢(p)=-1, and by Lemma
2.1, i(p;t)=~1. But p is simple, so it is a saddle. O

An illustration is provided by the Kruskal* extension
of Schwarzschild 2-space —time in which there is a
single bifurcate point® of the Killing horizon, which is a
simple saddle of £.

Since critical points with index 0 or +1 do not exist,
it follows from Proposition 3.1. (i) that a component of
the Killing horizon can contain at most one bifurcate
point, and that horizon polygons do not exist. For ex-
ample, in block diagram extensions (cf. last section), a
typical “block” is a region of space—time bounded by
four horizon segments. It follows that at most two
vertices of a block can be regular points and that there
is always a pair of opposite vertices which are either
singularities or infinities.

On the other hand, a conformal Killing vector field
may give rise to horizon polygons.

4. STRUCTURAL STABILITY

Let 7*(M) be the space of C* vector fields on a 2-
manifold M with the fine topology so that basic neighbor-
hoods are defined as follows: Let {V,} be a locally finite
covering of M by coordinate neighborhoods. For given
€>0 and compact set £ C M the neighborhood N{(£;Q,¢€) of
£ € (M) consists of all £* € #'(M) such that on each set
V, N the components of £* and their first partial
derivatives differ by less than € from those of £, while
£ = £* outside Q.

The notion of structural stability of vector fields on a
disc was introduced by Andronov and Pontrjagin.® We
shall call a vector field on M structurally stable if it is
structurally stable in the sense of Andronov and Pontrja-
gin on each disc D C M. More precisely:

Definition'S: A vector field £ € 7'(M) is structurally
stable if for each closed disc D C M and each ¢ >0 one
can find 6 >0 such that for each £* € N(¢;D, 8) there is
an e-homeomorphism of M onto itself which maps in-
tegral curves of ¢ onto integral curves of £*.

The following characterization theorem was first
stated by Andronov and Pontrjagin.® A proof was given
by De Baggis.'” The theorem is stated here in slightly
different form because of the slight adaptation of the
definition above.

Theorem 4.1: A vector field £ € 7'(M) is structurally
stable if and only if

(i) each critical point is simple, *®

(ii) each homotopically trivial cycle y has stability
index

fy(div.ﬁ)ds 20,

(iii) no seperatrix goes from a saddle to a saddle.

Comparison with Proposition 3.1 and Theorem 3.2
leads directly to the following result.

Theorem 4.2: A Killing vector field on a 2-space—
time is structurally stable if and only if each critical
point is isolated. A conformal Killing vector field is
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- structurally stable if and only if each critical point is

simple.

5. ANALYTIC EXTENSIONS

On a 2-space—time with Killing vector field £ one can
always find local coordinates x,y such that £ =23/9y and
det(g;;)=—1. The metric then takes the form

ds?=GYF® ~1)dx* +2Fdxdy +Gdy?, (4.1)

where F and G are functions of x only. It will be as-
sumed that F and G are analytic on an interval I. The
norm square of ¢ is G and the Gaussian curvature is
K=%G". This suggests that the singular appearance of
the horizons, given by G=0, is not real. Suppose G
has roots x=a, in I. The lines x=gq, then divide I XR
into strips W,=(a,, a,,;) XR, on each of which ds? is
regular analytic. The problem now is to find a way of
“joining” W, , to W, along a nonsingular “seam.” The
static case, given by F=0 (i.e., when y—~ -y is an
isometry), has been discussed in detail by Walker and
Godfrey, ® following work by several authors'~ on the
Schwarzschild, Kerr, and Reissner —Nordstrom
metrics.

It will be assumed that G’(a,) #0 for each ¢, so that

for given 7 one can write
G(x)=(x —a,)Gy(x), a=Gyla,)#0. (4.2)

Since 1/G(x) is analytic on an interval I, about x=aq,,
one can write

1/Gy(%)=a™ +(x - a,)H'(x),
(4.3)
F(x)/Go(x)=B/a +(x —a,)E'(x), B=F(a,),

for xc1,, where H and E may be taken as bounded
analytic functions on I;. We now introduce generalized
Kruskal* coordinates u,v, given by the double valued
transformation

w =(x -a,) explaH(x)], u/v=21|x-a,;|%exp{aly +E]},
(4.4)
where the sign is that of (x - a;). In terms of differentials
wrdu=%aldy +GHF +1)dx],

(4.5)
vidv=-%taldy + G F -1)dx],
so that the metric takes the form
ds?=xdudv, x(x)=-4a?Gyx)exp[-aH(x)]. (4.6)

The transformation (4. 4) is analytic everywhere on
U,=1I,XR except where x=a;, and has the effect of
mapping a strip of W, adjacent to x =g, into the first
and also the third quadrant of the «, v plane, while a
strip of W,_, adjacent to x=a; is mapped into the second
and fourth quadrants. Also uv =0 at x=g,; and uv is an
analytic function of x on I, with d(uv)/dx#0 at x=a,.
Thus x in turn is an analytic function of v on a neigh-
borhood of uv =0, so that the conformal factor y in
(4. 6) is nonzero and analytic in «v on a neighborhood of
uv=0. Finally,

_1.(,2 ﬁ_)
£=za (u u Vv /’
so that £ has a simple saddle at the origin and the Kill-

4.7
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ing horizon, given by the coordinate axes # =0 and
v =0, is nonsingular.

The space—time may now be extended by patching
together the given coordinate neighborhoods W, and the
Kruskal neighborhoods U;, using (4.4). The double
valuedness of the transformation (4. 4) entails that the
universal covering space of a space~time which has
been maximally extended in this manner will contain
either zero, one, or countably infinite horizon bifurcate
points, depending on whether G has zero, one, or more

than one root. Maximal extensions which are not simply

connected may contain any finite or countably infinite
number of bifurcate points. For examples, see Refs.
1-5.

In some cases, one may also use the above procedure
to extend nonstationary space-—time on which there is a
conformal Killing vector field £. One then starts with a
metric conformally related to a stationary metric of
the form (4.1).
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A number operator for a Weyl system is called renormalized essentially if it is obtained from the
total number operator by subtraction of a (possibly infinite) constant (in exponentiated form).
Necessary and sufficient conditions for the existence of.a renormalized number operator are

obtained.

1. INTRODUCTION

Given a representation of the canonical commutation
relations (CCR), a number operator (in the sense of
Chaiken?') is a self-adjoint operator N which satisfies
the commutation relations

Na*(f)=a*(f)(N+I) 1)

in bounded (exponentiated) form. Here a*(f) is the crea-
tion operator for the wavefunction f, and (1) is to hold
for all f. If such an operator N exists, then the repre-
sentation of the CCR, or Weyl system, is called a
particle representation or particle Weyl system.

It has been shown! that a particle representation al-
ways has a normalized number operator N (one whose
spectrum is a subset of the integers). If ¥ is an eigen-
vector for N with eigenvalue 7, then (1) implies that

Na*(f)¥,=(n+1)a*(f)Y,. 2

Thus, even if » is negative, one has the interpretation
that a*(f)¥, has one more particle than ¥, does.

An example of a number operator is the total number
operator in the Fock representation:

N=DN(, = Lim N(1,), (3)

where { fj} is an orthonormal basis of test functions,
N(f)=a*(f;)a(f;) measures the number of particles
with wavefunction f,, and N(M,)=3%, N(f,) measures

the number of particles with wavefunctions in the finite-
dimensional space M, spanned by { Siseees fk}. Moreover,
(3) is independent of basis? and this characterizes the
Fock representation. 23

Another example is provided by (irreducible) direct-
product representations.! They either have no number
operator or they admit a number operator of the form

N:E;, V() = m,) =Lim (V) - ,) @)

expressed in bounded form, where n,=3}%  m,. We may
view N as the difference between the total number ope-
rator lim,_, N(M,) and the constant lim, . »,. Unless
the representation is Fock, neither of these limits ex~
ists and one venovmalizes the tot.l number operator by
subtracting an infinite constant, Nevertheless, the par-
ticle interpretation (1) and (2) remains valid. Roughly
speaking, one subtracts the infinite constant lim,_ n,
because there is a cyclic vector which has exactly m,
particles with wavefunction f; (for all j) and, therefore,
an infinite number of particles.

Another example of a representation with a cyclic
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vector having an infinite number of particles is provided
by the exponential representations?~® that arise in con-
nection with the (¢%), model. They are locally Fock in
the sense that the number operator N(Bk), which mea-
sures the number of particles with wavefunctions sup-
ported within the ball B, of radius k, exists and is the
total number operator (3) for the representation re-
stricted to test functions supported within B,. The fol-
lowing question naturally arises. If one removes the
cutoff {k— ), can the total number operator be renor-
malized by subtracting an infinite constant:

N=1lim [N(B,) - n,], (5)

where lim,_,n,==? This question is not completely re-
solved. However, if the answer is affirmative, there
may be a shift in domain; this would mean that there is
a dense set of analytic vectors for all N(B,), and none
of these vectors is in the domain of N,

We say that a number operator N is renormalized if

eit¥ = s-lim exp[it(N, - n,)] (¢ real) (6)
B

holds for some sequence of integers {"k}’ where (a) N,
=N(M"®) for some increasing sequence of finite-dimen-
sional subspaces M‘® or (b) N,=N(B®) for some in-
creasing sequence of balls B if the Weyl system is
locally Fock. It turns out that for locally Fock repre-
sentations, (a) holds whenever (b) does.

Remark 1: The existence of (8) does not, in general,
suffice to define a number operator, i.e., an operator
for which (1) also holds. Indeed, Chaiken® has con-
structed (discontinuous) irreducible representations in
which the right side of (6) exists in the case (a) with M
=M,={f,,...,f and n, =0, but the limit is dependent
on the choice of basis; a number operator does not exist
for any such choice, In this connection it should be noted
that in order to construct a renormalized number ope-~
rator N, both (6) and (1) must hold. Of course, one need
only verify (6) to show that a given number operator N
is renormalized.

Remark 2: For continuous Weyl systems on separable
test function spaces, the existence of (6) implies (1) so
we do permit any increasing sequence of subspaces M
rather than just those of the form M® =M, ={f,,...,f}
for some choice of basis. Of course, we can always
choose a basis such that M® =M,,, where {r’} is a sub-
sequence of {#}. We do not require that the limit in (6)
be defined for more than one choice of M‘® or B,
However, if two renormalized number operators are
defined in this way for an irreducible representation, it
turns out that they differ by an integer so that they gen-
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erate the same automorphism of the Weyl algebra
W(f)—~ Wlexp(it)f] = exp (itN) W(f) exp(~ itN). 0]

Note: The equality in (7) is the exponentiated version of
(1) which serves as our definition of number operator
in the sequel. 3]

We regard two number operators which differ by a
constant as essentially equal. They have the same
eigenvectors with constant difference in eigenvalues.
Singling out one such number operator corresponds to
selecting a state with “zero” particles. Thus, the limit
in (6) is essentially independent of choice of M%) or B%®
when the limit exists. This assertion is no longer valid
for reducible Weyl systems.

However, bounded functions of renormalized number
operators are clearly observables, which commute with
all invariant subspaces for the Weyl system, and the
corresponding restrictions induce number operators.
Thus, an observable number operator could be a direct
sum of renormalized number operators on irreducible
subspaces. Two such operators need only be essentially
equal on each subspace. (Chaiken' gives examples of
nonobservable number operators for an infinite free
nonrelativistic Bose gas.)

Theorems 1 and 2 provide necessary and sufficient
conditions for the existence of a renormalized number
operator. Theorem 1 provides a short proof of partial
results of Chaiken?, who uses the special structure of
product representations to obtain more concrete neces-
sary and sufficient conditions that any number operator
exist; then all number operators turn out to be renor-
malized over subspaces of the form M® =M,. It would
be of interest to apply these theorems to representations
which lack this product structure [such as exponential
representations associated with the (¢%), model].

2. MAIN RESULTS

See Ref. 5 for notation and definitions concerning
Weyl systems W(f), fcJ, on a Hilbert space H. We
shall assume that the space J of test functions is sepa-
rable. We proceed with some introductory lemmas.

Lemma 1: If W(f), fed, is a locally Fock Weyl sys-
tem, then condition (b) implies condition (a).

Proof. Suppose (b) holds. Since W(f), f supported
within B%® is Fock, the main result of Chaiken® asserts
that for any orthonormal basis { £} with support
within B%

; (%) . ¢
SHtNBE) _ o 1im pitN MY

Joe

where M® ={f® __ . f®} Thus, given a vector ¥ c H
and € >0, there exists a j, such that

[[(eitn 5= _ eimmy:))q,” <e/2.

We may choose the bases so that M}’;’ is increasing as
k— <, By (b), choose k sufficiently large so that

[{exp(itN) - exp[itN(B®) ]} wll <¢/2.
Then
lIlexp(itN) — exp(itN,) ] |l <e
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for N, =N(M}:>) and k sufficiently large. The lemma is
proved.

In the terminology of Ref..1 a number operator is
normalized if its spectrum is either {0,+ 1,£2,%¢°¢ Or
{0,1,2"’“’}'

Lemma 2: A renormalized number operator is es-
sentially equal to a normalized number operator.
Proof: By (6), with ¢= 27,
exp(2miN) = s-lim exp[27i (N, = n, )| =1,
k=

since the n, are integers and the spectrum of N, is the
set of nonnegative integers, Therefore, the spectrum
of N is a subset of the integers. By the reasoning of
Ref. 1, N—n is normalized for some integer ».

QED

We require that the #, in (6) be integers solely for
convenience (see Ref. 1),

Lemma 3: If (6) and (7) hold with the #, not necessari-
ly integers, then N is essentially equal to a renormal~
ized number operator.

Proof: Let =27 in (6) to obtain
exp(27iN) = s-lim exp[2mi(N, - n,)] = s-lim exp(- 2min,) I,
R k=

®

Since exp(27iN) is unitary, the right side of (8) is a com-
plex number exp(-—ic) of modulus one. It may be that
n, —«, but (8) implies that n, — ¢ (modulo 27), i.e.,
there exists a sequence of integers {mk} such that

ny—c—m,—~0 (k—w).
Thus,

exp[it(N - ¢)]= S;Iim explit(N, - m,)],

so that N — ¢ is a renormalized number operator.

QED

The following lemma shows that when (6) and (7) hold,
the resulting number operator N is essentially indepen-
dent of the choice of N, if the representation is irreduci-
ble. Moreover, if an irreducible representation has a
renormalized number operator, then every number
operator is essentially renormalized.

Lemma 4: An irreducible Weyl system W(f), feJ,
has essentially at most one number operator.

Proof: If N and N’ are two number operators for W,
then two applications of (7) yield

[exp(itN) exp(~itN"), W(f)]=0 (fed).

Since W is irreducible,

exp(itN) exp(=itN’) = a(t)I, (9)
and the left side of (9) is unitary so that |a{t)| =1. Thus,
exp(itN) = a(t) exp (itN?). (10)

Since both sides of (10) are continuous, one-parameter
unitary groups, it follows that



336 James D. Fabrey: Renormalized number operators

alt, + ) =alt)a(t,)

and a(t) is continuous. Therefore, a(f) =exp(-ict) for
some real constant ¢, and N=N’ —c¢. This completes
the proof.

We remark that if the right side of
U(t) = s-lim exp[it(N, — n,)] (11)
koo

exists, then U(t) is a one-parameter unitary group.
However, the existence of a number operator further
requires that U(f) be strongly continuous at =0 (so that
it have a self-adjoint generator N) and that (7) be satis-
fied (so that N is indeed a number operator). We now
show that for continuous Weyl systems the latter condi-
tion is automatic. [Recall that a Weyl system W(f),
fed, is continuous if the mapping

f= (o, W(f)¥) (¢,¥<H)
is continuous—on all of J, not just on rays {tf}.]

Lemma 5: If U(#) exists, then it is a one-parameter
unitary group. If W(f), f< J, is a continuous Weyl sys-
tem on a Hilbert space H and U(#) is strongly (or weak-
ly) continuous at ¢t =0 with self-adjoint generator N, then
W is a renormalized particle representation with renor-
malized number operator N.

Proof: Suppose U(t) exists. Since exp[it(N, -n,)] is a
one-parameter unitary group for each k& and the product
is continuous with respect to the strong topology re-
stricted to the unit ball in B(H), it follows that U(#) is
also a one-parameter unitary group.

Let J, C J be either
Case (a) the algebraic span of {M®}2 ; or
Case (b) all functions in J of compact support,
Then in either case, for f e J,

exp(itN)W(f) exp(~ itN) = s-lim exp[it(N, - n,) [W(f)
Boo

xexp[—it(N, - n,)]. (12)

By Proposition 3.1 of Ref. 3 the right side of (12) is in-
dependent of k for % sufficiently large and it equals
Wlexp(it)f]. Thus, N is a number operator for the rep-
resentation W(f), f < J. The lemma follows from Lem~
ma 4.3 of Ref. 1 and the density of J, in J. The lemma
is proved.

For cyclic continuous representations, it suffices to
check convergence and céntinuity of U(t) {equicontinuity
of explit(N, -n,)] at a cyclic vector}. [Compare this with
a result for Fock representations (Remark 2, p. 79, of
Ref. 3).]

Theovem 1: Suppose § is a cyclic vector for a con-
tinuous Weyl system W(f), fcJ. Then W has a renor-
malized number operator if and only if

Ut =1lim exp[it(Nk - rlk)]ﬂ (13)
b=
converges for some choice of N, and {— U(t)Q is con-

tinuous {equivalently, exp[it(N, —n,)]Q is equicontinuous}
at t—0.

Proof: Necessity is trivial. Let us now suppose that
U(t)Q exists. Then for f € J the limit
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UEW(f)=1lim explit(N, - n,) IW(f)Q

=lim Wlexp(it)f] exp[it(N, - n,)]Q

= WlexpGEt)flU@®)Q (14)

exists. [Property (7) for number operators has been
used to “push” exp[it(N, —n,)] past the Weyl operators
in (14).] By the Weyl relations and linearity, U(:)AQ
exists for all polynomials A in the operators W(f).
Since W is eyclic, the set of such AQ is dense in H,
Therefore, U(f) is everywhere defined.

If +— U(#)Q is continuous at £=0, then by strong con-
tinuity of W[exp(it)f], which is the composite of the con-
tinuous maps ¢t— exp(it)f and g— W(g), and by (14),
Ut)W(£)Q and U(t)AQ are continuous at £=0 for all
polynomials A in the operators W(f). Since [|U(#)l| =1
for all ¢ and the set of such AQ is dense in H, it is easy
to verify that U(¢) is strongly continuous at t=0.

The theorem then follows from Lemma 5.

Corollary: Continuous discrete direct-product rep-
resentations! are renormalized particle representations,

Proof: Let ¢ =®, ¢m,; be a cyclic vector, where ¢, is
the jth Hermite function and m, are bounded. Let M®
={e,}t., and n,=3,m,. Then

U(t) =1lim explit(N,— n,)]¢ = ®, explit(N, - m /)], =1

B
exists (since ¢,,, is an eigenvector for the number
operator N, with eigenvalue , in the Schrodinger
representation) and is trivially continuous at /=0. QED

Of course, the results of Chaiken utilize product
structure and are therefore much deeper. Theorem 3.3
of Ref. 1 establishes that the only direct product rep-
resentations with number operators are the discrete
representations (no continuity required) and they are
renormalized particle representations. The key step is
the existence of the strong limit of exp(itN,) (which
nevertheless must be renormalized because it is not
strongly continuous at t=0).

Weyl systems may well be cyclic, yet limits of ex-
pectation values may be more manageable than strong
limits (for example, exponential representations®).,
Unfortunately, the weak limit of exp[i#(N, —n,)] defines
an operator U(f) which need not even be unitary. How-
ever, we can formulate the following theorem that in-
cludes two conditions which are together sufficient for
the existence of a number operator.

Theovem 2: Let W(f), fc dJ, be a continuous Weyl
system on a Hilbert space H. Then W is a renormalized
particle representation if and only if the limit U(#) in
(11) exists and is weakly (or strongly) continuous
{equivalently, exp[it(N, -n,)] is equicontinuous} at =0
on a dense set DC H for same choice of N, and #,. In
this case the self-adjoint generator N of U(t) is a num-
ber operator for W,

If U(f) exists, then a sufficient condition that it be
weakly continuous at =0 on Dis that DC N D(N,) for
each ¥ €D and

(¥, 1N, = 2,1 %) < K=K(@) @)



337 James D. Fabrey: Renormalized number operators

is uniformly bounded (k=1,2,¢¢),

The W*-algebra generated by the operators exp(itNk)
is unitarily equivalent to a multipication algebra /4 in
some measure space L,(X, 1) and exp(itN,) is repre-
sented by exp[itn,(x)] for some real, measurable func-
tions #,(x), k=1,2,°++. For any choice of N, and n,,
there exists a subsequence {¢’} of {£} such that the weak
limit

ut)= w-1im explit(N,, = n,,)] (16)

exists. If there exists a choice of N, and », for which
n,(x) - n, converges almost everywhere, then the con-
vergence in (16) is strong. If, moreover, (15) holds,
then a number operator exists.

Proof: Necessity in the first paragraph is trivial, and
sufficiency is essentially a restatement of Lemma 5.

If (15) holds, then
| (@, {explit(V, - n,)] - Bo)| = 1L, {[* iV, - n,)
X explis(N, - n,)] ds}¥)|
< K(U)t

so that explit(N, -»,)] is equicontinuous at =0 for all
Ye D,

The first two assertions of the third paragraph are an
immediate consequence of the spectral theorem, Stone’s
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theorem, and the fact that the N, commute with each
other, Then (16) follows from the fact that exp[itn, (x)]
belong to the unit ball in L,(X, u), which is w*-compact.
The last assertion follows from the Lebesgue dominated
convergence theorem. Indeed, we obtain a.e. conver-
gence of explitn,(x)—n,] to a measurable function g(x) of
magnitude 1, and multiplication by g{x) defines a unitary
operator Ac /{j. Moreover,

I(explit(N, —n,)] - Al = [ | explit(n,(x) - n,)]
- g ) |2du
~0 (k—=).
The theorem is proved.

Remark: It is quite possible that DC N, D(N,) yet
D n D(N)={0}. It would be of interest to know if this
is the case for exponential representations.
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The three-particle S matrix*
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It is proved that a reduced 7 matrix, defined by factoring out of the three-particle S matrix the
product of the three two-particle .S matrices, is a compact operator on the energy shell, in spite of
the double-scattering singularity. As a result there exists a discrete, complete set of eigenphase shifts

at every energy.

1. INTRODUCTION

The calculations of three-particle scattering ampli-
tudes are well known to be beset by disconnected-
diagram difficulties that are solved in a variety of
ways.!™® What is much less generally appreciated? is
that the solution of these mathematical problems still
leaves untouched certain other related difficulties that
arise in the three-particle S matrix itself on the energy
shell. These have to do with the possibility of double
scattering.®™" The part of the T matrix that describes
three free particles coming in and emerging freely has
infinities at those momenta at which real, on-the-
energy-shell double scattering is possible. These are,
at a given total energy, the momenta compatible with
conservation of energy and momentum in a two-particle
collision, followed by a collision of one of these two
particles with the third. One of the consequences of this
behavior of the 7 matrix is that the total three-particle
collision “cross section” is always infinite. The main
reason why this disconcerting result fails to violate our
intuition as egregiously as it might is that the three-
particle-to-three-particle “cross section” is a rather
unintuitive object [of dimension (distance)®] anyway.

The main purpose of the present paper is to prove
that, the double scattering infinity not withstanding,
the reduced T matrix, defined by factoring out from the
S matrix the three single-scattering S matrices, as an
integral operator on the energy shell is compact. This
result is proved in Sec. 5. In Sec. 6 we discuss some
of the consequences, primarily spectral expansions in
terms of eigenphase shifts. Section 2 contains the con-
nections between the T operators, the Faddeev equa-
tions, and other “connected” formulations.

2. T OPERATORS

Let H, be the kinetic-energy operator of the three
particles in the center-of-mass system; V; the potential
of the interaction of particles j and k&, i#j#k; and

GHE)=(E -H,+i0)™, (2.1)
G{(E)=(E ~H, -V, +i0)™, (2.2)
GE)=(E ~H +40)™, 2.3)

where H=H, +3},V,. The two-particle T operators are
defined by

T,G;=V,G}, (2.4)
and Faddeev’s 7 operators by

7,Go=V,G*, (2.5)

7,;Gi=ViG", i#j, TyGi=V(G" ~G)). (2.6)
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The resolvent equations

G*=G;+G;;‘Mvjc+ 2.7
left-multiplied by V, then yield Faddeev’s equations
Ti:Ti+TiG3§iTj’ (2.8)
=Tl =8,) +T,G; 27y (2.9)
We may also write
T,:V,(l—z;, Uj)", U; =GV, (2.10)
T,;=T{1-U;)-V;6,,,
and then obtain
r,.=T,<1 -XU-Z U,l"i>'1
ti it
=T{1-T,T)™1+T), (2.11)
where
T,=G,T,=U,(1 -U)", (2.12)
r,= (1 -2 U,.>" 2 Vs (2.13)
so that we get
r,= 2 F(1-T,T)*14T,), i#k#j. (2.14)
F

Equations (2.8) and (2.9) and the resolvents in (2.11)
and (2.14) are “connected. 8

The T operators are given in terms of the 7 operators
as follows:

Too:Ei Tis

To=27T,, Ta=2 T (2.15)
it i

T”= ?T” +V](1 —5“.).
I#4

The notation here is such that T,; is the T operator for
a collision in which initially the pair j=(%,1), k#j+l,

is bound and finally the pair i=(l,m), I #i#m, is bound;
T,; is the T operator for the breakup reaction of pair i
colliding with particle i; T,, is the T operator for three
free incident particles, with a bound state of pair 7 in
the final state; T, is the T operator for three free
particles both in the initial and final states.

The corresponding T matrix elements are given by
Too =(¥55 Too¥o),
Tos= (%, Toi‘I’i): Tp= (‘I’i: Tio‘I’o),
T, = (¥, Tij"I'J):

(2.16)
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where ¥, is the free state, in the coordinate representa-
tion, in the center-of-mass system, and ¥, is the tensor
product of a bound state for pair j and free motion for
particle j relative to the center-of-mass of pair j.

It was shown in Ref. 9 that time-reversal invariance
implies that the T matrix satisfies the reciprocity
theorem. The completeness of the bound states of H,
plus those states ¥/ that correspond asymptotically to
¥;, plus those states ¥® that correspond asymptotical-
ly to ¥,, leads to the unitarity equations, which we
write in abbreviated form as

TaB—Tg‘a:-Zwizyz J T\ T, (2.17)
where @, 8, and y take on the values 0, 1, 2, 3. If we
want to be more explicit we have to introduce specific
variables and normalizations, as we shall now do.

We shall use the following coordinates and momenta,
and their cyclic permutations'?:

r = (2#1)1/2(132 —Rs) =(2 “1)1/2R23,

(2.18)
pr = (2/1,)! %(m R, + mRy) =m,(2/1,)* /°Ry,
kl = (251)-1/291 = (271_1)-1/2(.92 +p3),

(2.19)
@ = (/2 (2 - B,
by =mgmg/(m, +myg), Wy =my(m, +mg)/M,

(2.20)

M=m, +tm, +m,

in terms of the particle coordinates R; and momenta p;
in the center-of-mass system. The momentum q; is
conjugate to r;, k; is conjugate to p,, and the three-
particle Schrodinger equation reads

[- v+ z.(r,.)]wzm, (2.21)
1
where V3 is the six-dimensional Laplacean
22 2?
2_ 2.22
Ve= 32 T3 (2.22)

and we write simply V(r,) for V;(R)=v,[(2p,)*/r,].
Changes from one coordinate system to another are
accomplished by

ri=a;r;+b;;p;,

q;=a;4; +bjiki’

(2.23)
p;==b;r;ta;p;, K;=-b;Q;+a; kK,

where for 4,j=1,2; 2,3; 3,1; and k#i+j,

a;;=0a;;= —(’J‘ip‘j)llz/mk, —bij:bii:(p'j/ﬁi)llz
(2.24)

so that a%; +b%,=1. We denote the six-dimensional co-
ordinate vector (r;,p;) by R, and the six-dimensional
momentum vector (q;,k,;) by K. Then E=K?*=|K|?

=q} +k? and the volume elements are (dK)=(dq,)(dk,) in
momentum space and {(dR) = (dr;)(dp,) in configuration
space. Our notation for the solid-angle element, for
example in r-space, is (dr'), so that (dr)=(df)»*dr.
The inner product K-R=q,-r, +k; p, is also invariant,
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It is notationally convenient to think of T,, as a 4x4
matrix!! (with @ and B taking on the values 0,1,2,3)
whose elements are integral operators on the energy
shell, with integral kernels given by the T matrix ele-
ments. We shall call it simply T. Then the element
kernels are given by Too(E;K,K"), T o(E;q,.%, kK",
To(E;K;q},%,k]), and T, (E;q,,°, K;3q),°,K;]), and the
unitarity equation (2.17) reads simply

T(E) -~ THE) = - 2mT(E)TY(E). (2.25)

The measure used in the matrix multiplication, ac-
cording to (3.8) and (3.9), is the following: On O-ele-
ments it is

[ (@K)S(E —K?)-+- (2.26)
and on i-elements, ¢=1,2 3, itis
(2p)%2Y [(dk,)O(E -2, —F2) -+, (2.27

with the sum running over the two-body bound states
of the pair i.

3. COMPACTNESS OF THE REDUCED 7T MATRIX

In order to remove from the 3-3 part of the S matrix
the single-scattering terms, i.e., the disconnected
parts, it is most convenient to define a reduced scatter-
ing operator. This can be done in a variety of ways and
the resulting operator depends on the order in which it
is done, but the essential properties of that operator do
not.

We have the scattering operator for 3-3 scattering,

Soo=1 =2m8,T, (3.1)
where 6,=6(E — H,) and

Too:Zi: Ti:Z.; Ti+Z)T¢GSTj+T’- (3,2)

i itj

Equation (2. 8) shows that

= i#JZk)*i T4GoT ,GoTs- (3.3)
Factoring out §,S,S,, where

S;=1-27i6,T, (3.4)

is the two-particle S operator for the pair j, I, j#i#l,
gives!?

Soo = 515, SsSto (3.5)
with

Sio=1=2mid,T,. (3.6)
The reduced T operator is given by

T4o=SISISUTp + Ty), 3.7
in terms of

T =7"=(2m)T,6,T30,Ts, (3.8)

T,= %(TiGaTj +T,GyT,). (3.9)

The double-scattering difficulties reside in the operator
Tp.

The matrix element of a typical double-scattering
term is given by the kernel of the operator T,G;T,,
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Ty E;K,K")T,(E;K",K’)
E-K®+i0

(K| TIG;Tle’)zf(dK”)

_ HE-khal, ) )6(E ~ k5305, ¢5)
DL(E k7 -qi7+i0)

(3.10)

where q; and q; are determined by the double-scatter-
ing conditions

! n
k, =a;,k; — 01,07,

k;=a,;k, +b,7. (3.11)
Now
bio(E = B} —q{®) =b%LE = b} — bJ® +2a,.%, - kZ, (3.12)

which vanishes at those values of k, and k; for which
double scattering can occur on the energy shell. For
those values of k, and k;, therefore, the 3-3 amplitude
becomes infinite, What is more, the infinity is not
square integrable as a function of either k, or k;. This
means two things: (a) the operator T,GyT,, of which
(3.10) is the integral kernel, is not in the Hilbert-
Schmidt class (hereafter called HS); (b) the contribution
(3.9) to the 3-3 scattering cross section is such that
the total 3-3 scattering cross section is infinite.

We now want to consider T, as an operator on the
energy shell, i.e., as an operator on the space &
= L?(K) of square integrable functions on the sphere
IK| =K in six dimensions. We intend to show that, as
such, T,7j is in the Hilbert—Schmidt class. One of the
terms in that product is T,G;7T,8,T5G:T?, and its
integral kernel is given by

I= (K| T,G3T,8,TGST, | K')
— [ () [ @8 K| To 65T, KK | 13637 [K)

X
=f dkyky2q)
o
MK,K’,kY)

5 7
Xf (ak bi,(E —ie -k} —q) 2)(E +i€ — by

qizﬂ) ’
(3.13)
where q, and q;° are given by the equations
K, = ayK, = by Q)" = azK{ - by91°,
and the numerator is given by
NK,K', k) =302 [ (@d(E - k2,0, 4" )t(E - k{3507,
th*(E Ry %5%z", @5 HE —R{%a1,41")
with g2 and q3° determined from the equations
k) =a. Ky — b9
It is understood that E=k% +g2 =k +q{®=k)® +q;°.

" 10
ki =aKy —b1,q%3°,

Thus I is of the form

I— LdeélkélzqérJ(ké/)/arbl’ (3.14)
where
N(n)
J(ky) = /(dn)(1+a AT (3.15)
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with
a=2a,,k;k,/a’, b=2a,,k/ki/b’,
a'=by,"E ~ic ~ky® — k3%, b'=0,,°E +ic — k2 — b2,
(3.16)

For generic values of a and b the two denominators in
(3.15) vanish simultaniously (for €=0) at two values of
n that are symmetric with respect to the plane of a and
b. We handle each half-space separately. Let fi, be the
value of A in one half space, §,, for which both

denominators vanish. Then
N(f) = N(8,) . Mn) - N(#,)
_/5 (an )(1 +a-A)(1 +b- ) f_gz(dn“)(l +a-A)(1 +121-ﬁ)
+INE) + M@ [ @ a8 +b-)7.

If the two-particle T matrices, and hence N, satisfy
Lipschitz conditions near the energy shell, then the
first two integrals converge even for ¢=0 and we need
not consider them further. They will in any event be
better behaved than the third. Hence we consider the
third,

J= [ (ah)(1 +a-A)"(1 +b-A)2, (3.17)

If we write a=(q +i£)a, b=(b +in)b and we assume that
a>b>0, then we get in the limit, as £~ 0 and n—0,

L, if a <1, b<1,
L +imsgng, ifa>1, b<1,
L +in(sgng —sgny), ifa>1, b>1,
a:b>1+[(a®-1)p* -1}/,
XJ'/21=< Q@ +n|sgnt -sgny|, ifa>1, b>1,
b® <a-b <1 +[(a®-1)(* -1)}/2,
L +in(sgn¢ +sgnpy), ifa>1, b>1,
a-b<l-[(a®-1)p%-1)]"",
Q - m|sgnt +sgm|, ifa>1, b>1,
p2>a-b>1-[a®-1)(p%-1)]!/2,
where (3.18)
- b-1-x
L_Ina b 1+x|
_ a_ X -1 X
Q=2tan” Gty T2 T T

x=[(a-b =10~ (a® =1)(p% - 1)[ /2
= (2 ~b)? - (axb)?|*/2,

Consequently, there are two kinds of integrals in I that
have to be tested, one from the constants and @ (which
is bounded) in J'y,

deé/kéfqzﬂ
- Lraf2de .1
Il /(; alblx b (3 9)
and the other from L,

zz_f kil‘,’, , L'=L/x. (3.20)

We first consider I,, which may be written

o 1 [K" dx(K? = x)'/2.
1T a1k, <k J, (F=2cx+d?)/%°
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where x=k,? and
¢ =b%,E +hkla +ai (B + k)8,
d® = b4, E® + k2R +2b%,ER ki,
a and B being defined by
(k, ki) - (&, k] —k{k)) = (k, -k)*a,
(k, Xk{)?/(k, —k{)* =3(kf +%1%)B.

It is easy to see that no matter what values k, and k{

take on, we always have
lel<1, 0<p<1.

Now

dx(K? - x)*/? K® dx
K Z—2cx+d)® = (F ~2cx +d®)'?

]

ifd=zc,
-d* )2/ IKP =cl.

c+d
c-d

where y=(lc? Consequently, it is

clear that

L[ Al < comst|m] -] | (3.2D)
and, therefore,

4] < e [nle -] 1. 3.22)

The right-hand side of this inequality is square integra-
ble with respect to k, and k;, in the ball k, <K, k; <K,

Next we test I, of (5.20) for square integrability.
Using Schwarz’s inequality, we have

‘Izlzz__ Ij(‘)l{dk//kzuaqzﬂllr/a;bllz
< (dekukzﬂqu//Z) dek” ”Z|L'|2/a'2b’2
=const f drlRy|L'|?/a"b".

At this point we exchange orders of integration, de-
ferring the %, -integral and performing the integration
over k, and k| first. (This exchange in the order of
integration is justified by the Fubini—Tonelli theorem.'®)
The first step is the integration over the directions of
k{, i.e., of b, using a z axis in the direction of a. We
introduce the abbreviations A=1-4?, B=1 —4?,
t=(1-a-b)/(AB)/2, where a=lal, b= Ibl, and obtain

. - t+(2-1)42
1. 1/2 2 _ 1/2
L'=(AB)/2|£ 1| In =7 —1y7e -

Hence
. 27 to
[(db)’L/IZZ___(AB)l/Z’/‘ dt|L1|2
ab -to
_ 27 o gt n t+H(A=-1)2 |2
~ab(ABY'? |, 1 -1] t~(F =177
o
where {,=ab(AB)™/%, The ! integral being uniformly

bounded with respect to {,, we have

J awai i< g
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and hence

X
f (diz,)(di]) | I,]? < const f drIRy? f dk, k2
R1<K, 1<K 0

K dRiki® K o
T =const f dk
X|  a7™572ab(ABY 2 , 4

X dkiky i ) 2
( Y [kl _(b12q2 —alzk”)z]uz[lh —(b12q7 +aiks 2] 7z

The integral over k, is of the form

0 dx
fo e =pT7 < constlin[a -4l

= const |Inda,,b,,q7 k7 |

by the same argument as in (5.21), with a=(b,,q/5
—akY), B=(b,qs +a,kyF. We therefore get

x
(dk,)dk)) |1, |2 < constf0 dk![In(klq) 1P

< const.

fqu(,kiqr

(3.23)

Thus we have shown that I of (5. 13) is square integrable
on the energy shell. The same argument applies to the
term T,G;T;6,T3G4T}S and to all terms of the form
T.G;T,;8,TIG3T with i#j, k+#j.

Let us now consider a term such as T,G;T,0,T}G;T}
with ##2. The second denominator in (5. 13) now
becomes

BiAE =k —q;) =b,E ~k{® — R} +2a, K] -k

with kY =a;,K) — b,,q,. Hence it is given by
b3 ,E —afky? —b%haqs? — kP +2a, k) K,
+2b,,0; - (a;k; - aijk’)

where g7 =FE - k2%, In contrast to (3. 12) this depends on
the direction of q;/, which is integrated over. Thus, the
singularity produced by the vanishing of the denominator
is changed from a pole into a logarithmic one, and
since we have shown that the possibility of simultaneous
vanishing of the two denominators still keeps the func-
tion square integrable even when that causes a double
pole, the term TIGBTZGOT}G;TI will also be square
integrable. Thus, all terms of the form T,G;T,5,T,GiT,
are in HS. Moreover, the same applies to
T;GyT;6,TiG,T} and T,G¢T,6,THGyT}. Equations (3.18)
show that there are no singularities worse than we have
examined. The double-scattering term T, in §;;, as an
operator from ¢ to &, is therefore in HS.

Next we examine the explicit, “real” triple-scatter-
ing term in (3.8)

(K| T,6,T55,T5| K”)

_f(dq N(E = k\%0,,40)6(E = k%05, 457

X to(E = kézyqsm,qa) 5(‘13 —CI:’;“2 i’/zbzss, (3.24)
where
bagls” = bady +ayK; ~azK,,
d2" = a3 +byky,
(3.25)

47 =axd; +bxk,,

Ky =a K —b,047, @) =q,.
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One of the angle-integrations left can be done by means
of the 6 function. Using a coordinate system in which
ayK; —a, K, lies along the z axis, we get

(K| T,6,T,6,T5|K")

Y NG L U0t Y FUL A Kl FL )
2by3| azKg —ask, | ’

where
(55107 +azqK; - azlkl)z = b232‘I§2

now determines the angle between q; and a,k; — a,k,,
and ¢ is the azimuthal angle of q; about that axis. Pro-
vided, therefore, that the two-body T matrices ¢,,¢,,1,,
on the energy shell, are bounded functions, the above
is square integrable over K and K’ with K| = |[K’| =K,
and T,5,T,5,T,, as an operator from & to ¢, is HS.

Finally, there is the operator 7', given by (3. 3).
According to (2.11) we have

™= 2 TiGT,GTCy (3.26)
1#j
where
C,=(1-r_,T)*1+T_)
=1+T_,1-0,T)'r,+1-0_,,)'r, (3.27)

and I'; and I'_; are given by (2.12) and (2. 14).
The kernel of T,G;T,GyT; is
(K| T,G3T,GTs | K)

zf (dq_{/) t1(¢112;qu q{')tz(E i kZ’IZ;qé’ 2 sz)ts(CIéz;qg", q:;)
(g:° — a1 +iE)(E —q5"® — k3® +ie) ’

(3.28)

We must now take K on the energy shell, but not K'.
Thus, we consider T,G;T.G,T; as an operator from the
whole Hilber: space 4 = L?(R?) to the energy shell £
=L*K), and we want to test if its kernel (3.28) is
square integrable.

First we note that
T,GyToGoTy =12 Yusg, (3.29)
where
Q=1+v,Gu,,

Uy = lvllllz’

1+ +
Y=0,G,V, Ggvs,
N =vyu,.

It was shown in Ref. 9 that if the potentials are bounded
and decrease at infinity faster than »*°, ¢ >0, and if
there are no zero-energy resonances or zero-energy
bound states in the two-body systems, then, as an
operator from /4 to /4, Y is HS. The operator  is
bounded. Hence QY is in HS. Now the question is if the
kernel of #,2Y, as a mapping from /4 to & is square
integrable. That is a question of poinfwise convergence
of the integrals at g =(E — ¥*)*/2, as becomes clear when
we write

[(@K)-- =% ["dE [

which is an integral over ‘“all energy shells.” A func-
tion f(K)=f(E,q,k) that is square integrable over E
need not be finite at a specific value of E. However,

(k) (dGNE = RY'/2+ -,

2¢E
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suppose that £(q,k) is square integrable.
J (@a)(dk)|f(q,k)|? < .

Then it follows that
£(a,k) = [ (da")ulq -a")f(a’,k)

is square integrable on every energy shell if x(q) is
square integrable, because by Schwarz’s inequality

|gta, k) |*< [ (da)|u(@))]” [ (da”)|F(a”, k)2
This argument shows both that %,QY is an HS operator
from // to ¢, and that »,Q Y%, is an HS operator from
& to £ (provided that the assumption of Ref. 9 are
satisfied; square integrability of #; and %,, i.e., ab-
solute integrability of ¥, and V,, are then assured).

There remains the factor C, of (3.26) and (3.27). The
“1” term in it has already been covered, since

- T,G;T,G;T, has been shown to be HS from & to &. The

remaining terms in (3.27) are both of the form Aux,,
where u; is square integrable and A is a bounded opera-
tor from #4 to /4, provided that E does not have a value
that coincides with a bound state.!* Hence, the above
argument implies that T,G4T,G4TC, is HS from £ to &
Therefore, we have shown that 7’ is HS from ¢ to ¢,
i.e., its kernel is square integrable on the energy

shell (unless E is the energy of a bound state in the con-
tinuum), and so is T,.

Now the operators S; being unitary, it follows from
the unitarity of S that S}, is bounded. Hence, 6,7,
=(1 -S;,)/27i is bounded and thus Ty, as an operator
from ¢ to ¢ is bounded, and so is T(, +Tg,. but Tg, has
been shown to be HS on ¢, and hence bounded. There-
fore, T, is a bounded operator from & to &£. Since it
was shown that T,5,T7 is HS (from & to &), it follows
that on the energy shell, T, is compact. 15 Therefore,
so is T§,. :

4. SOME CONSEQUENCES

Let us discuss some of the implications of the com-
pactness of the reduced T operator (3.7) on the energy
shell. The most important consequence is that the
spectrum of T, (other than zero) is discrete, i.e., a
point spectrum only, each (except possibly the point
zero) with finite degeneracy, and accumulating at zero.
If we form a super-Hilbert space'! 7/ as a direct sum
of the four channel spaces and call S the scattering
operator (on the energy shell) on this space, then the
reduced S matrix is given by

8’ =8;'8;'8;'S =1 -2mT’, (4.1)
where 8, is given by
(Si)aﬂzsiﬁoaéoB +(1 —boa)aaﬂ' (4.2)

Then S, §’, and S, are all unitary, and T’ is compact.
Hence, the spectrum of S’ is discrete, of finite degen-
eracy,'® and accumulates at the point 1. Since 8’ is
unitary, the eigenfunctions furthermore form a com-
plete orthogonal set on #/. So, even though above the
break-up threshold there is a continuity of energy dis-
tributions between the particles at each fixed total en-
ergy, we may define an infinite discrete set of real
eigenphase shifts 5, by calling the eigenvalues of S’,
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exp(2i5,). This makes the eigenvalues of T’ equal to
—(1/m) exp(i6,) sin 5,. As n—~, we must have sind, —0
in such a way that

2 d,sin*s, <=, (4.3)

where d, is the degeneracy'” of 5,. This follows from

the fact that on &
tr(T'TH)E <0
as shown in Sec. 3, and unitarity.

If we call the eigenfunctions of T’ on the energy shell
y{*}K), then

- 1rf (dK)(E - K'3)TH(E;K, K Wy O(K')

-nE [ (a&)HE =g 2 - kPITSAEK, q72, K i (g 2, k)
=exp[id,(E)]sind, (E)y.*(K), (4.4)

=7 [ (dKO(E = K*)T o E;q}m, k5K I,V (K)

-n;: [ (@&)SE —q2 = k)T (E;a%,, ka2, Ky g, k)

=exp(i6,(E)]sind (E)yy (q%, K;). 4.5)

They are mutually orthogonal with the weights (2.26) or

(2.27), respectively. There then exist the representa-
tions, in the sense of strong convergence, '®

— TLAEK, K) =3 7 (K P H(K) explid, ()] sind, (E),

(4.6)
or, more explicitly,
- 7T (E;K, K) = Z"} PLOK )y 0*(K) exp(id,) sinb,,
4.7
- 1TH(EK, 45, k) =25 v (K )y, P Xq3,, k) exp(ib,) sind ,
' 4.8)
= 7T ((E;q5m Ky K) = = 1T io(E3¢%m, R ;K)
=227, (¢, R)Y," H(K") exp(i5,) sind,,
(4.9)
- 1T (E;qi%,Kisq5,,K,)=— 7T ,(E;q 2, k3¢5, k)
—Z)y,‘,”(q,m,k W *q5,k,)
xexp(6,) sind,,. (4.10)

Equations (4.7) and (4.8) imply that

— 7T oo(E; K, K) = 25 9" (K )y O *(K) exp(i5,) sind,

4.7)
and
— 1T {E;K’, K) = 209" (K Wy, *(K) exp(i6,) sins,,
(4.8")
where
Y0 = (8,8, Sk (4.11)

in which y, and all three S; are on the energy shell.
Below the break-up threshold, of course, both sides of
(4. 4) and the first term on the left of (4.5) vanish.
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There are two relevant remarks to be made here.
One is that the representations (4.7’), (4.8’), (4.9),
and (4. 10) do not manifestly obey reciprocity when time
reversal invariance holds. It must be remembered that
exp(2i6,) is an eigenvalue of §” which depends on the
side and order in which the three S; have been factored
out. Hence the eigenphase shifts depend on that, too.

The second remark is that since the values of K’ at
which the double-scattering divergences occur in Ty,
depend on K, these cannot be divergences in the func-
tions y*’. They must, in (4.7) or (4.7’), manifest
themselves as divergences in the expansion. In other
words, the series in (4.7) and (4.7’), although strongly
convergent, must be pointwise divergent at the double-
scattering momenta.
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The transformation properties of generalized free fields under the transformations of the Weyl group,
and particularly under the subgroup of dilatations, are discussed. It is shown that there exists, for
any complex value d of the dimensionality parameter, a generalized free field, defining by means of
its one-particle states the suitable irreducible representation of the Weyl group.

I. INTRODUCTION

First we recall briefly some group-theoretic results
concerning the Weyl group and its unitary ray represen-
tations. '3

The Weyl group consists of the following elements:
dilatations I({I >0), homogenous Lorentz transformations
A, and translations a. Denoting an element of the Weyl
group W by (a, A, d), the multiplication law of the group
has the form:

(@, A, U)a, A, 1)=(a" +A'T"a, A'A D). {1.1)
1t follows from (2.1 that
W=T®DL,, DLy=L,XS, (1.2)

where T denotes the group of translations, L, the homo-
geneous Lorentz group, and S the one-parameter trans-
formations of scale (dilatations). The commutators for
the generators of the Weyl group are the following:

[Ml-w’ Mﬂ]:i(gupﬂw-'-gwﬁun_gumw-gvau‘r)’

(1.3a)
[y Bl = (g, - 8,2 ), (1.3b)
[#,,, D]=0, (1.3¢c)
[D,B,]=ib,, (1. 3d)
[P,,P]=0 (1. 3e)

We obtain all representations of W by investigating all
representations of the universal covering group W.
Every irreducible unitary ray representation of W can
be found by the method of induced representations, given
by Mackey, * which is in particular applicable to the
semidirect product of a separable and locally compact
group H and an Abelian group N. For the construction
of irreducible representations of H®N, induced on N,
it is necessary to specify:

(2) The characters N on N.

(b) The orbits in N under the action of H.

In our case N=T, and H=DL,. The group T, of char-
acters consists of the functions exp(ip,x*). The group
DL, generates equivalence classes in 7y; the invariant
subspace with respect to the action of DL, in the space
of eigenvalues P, is called an orbit. One gets the fol-
lowing six orbits:

0,:all p,=0, 0,:p%<0,
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0y:p0>0, p2>0, O;:p>0, p2=0,
Og:Pe<0, p2>0, Og:pg<0, p2=0.

One can interpret the one-dimensional representation
space corresponding to O, as a vacuum state, and sub-
sequently the irreducible representation spaces related
with orbits O, — O as generated from the vacuum by
means of the following free field operators®:

0,, O;—generalized free fields,
O,—generalized free tachyon fields,
05, Og—free massless fields.

The transformation properties of massless fields
under the action of the Weyl group are well known.” If
we perform the dilatation transformation

(1.4)

the components ¢, of a massless free field transform
as follows®:

U p4(R)U 1) =110 4(x), (1.5)

where d denotes the dimensionalily parameter. One ob-
tains only the following two values of d:

d=1 for bosons (helicity x=0, + 1)

x—-x'=lx,

(1.5a)
d=3 for fermions (helicity A=+ 3, + $).

In this paper we shall study the representations gen-
erated by the generalized free fields (orbits O, and O;).°
1t is easy to see from the relation (1. 3d) that

eiaﬁﬁﬂpue-iaﬁze-mpuﬁu (1.6)

and particularly, putting 7=e%, one obtains for the
eigenvalue m? of the Poincaré-invariant mass-squared
operator P P*:

(1.7)

i.e., the only invariant support of the mass operator is
the interval (0, ©). Choosing the vectors p, on the orbits
0, and O; as follows:

mz_.mlzz mZ/lz’

O,:p,~(1,0,0,0), (1.8)

O3:p,~(~1,0,0,0),
one gets for the orbits O, and O, the following little
groups:

3, =3y =R, (1.9)
Copyright © 1974 American Institute of Physics 344
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where R; is a covering group of the three-dimensional
rotation group R,, i.e., one obtains the usual spin as-
signment (s=0, 3, 1,...). The irreducible representa-
tion of the Weyl group, characterized by an arbitrary
complex dimensionality parameter d and a spin s, is
generated from the vacuum by means of the components
of generalized free field with spin:

0z 851 = [y a* () />0 3),
0y : @20 = [ AR (N4 12206 (x38)

where

(1. 10a)
(1. 10b)

a,=1 for bosons (s=0,1,2,...),
a,=% for fermions (s=3%,3%,...),

and ¢$?, ¢’ dencte positive and negative frequency
components of the so-called Licht field with spin. 1° The
general rule for constructing any Licht field is to as-
sume that in the usual massive theory the mass square
is a continuous parameter. The field equations for
Licht fields are the same as tor usual massive free
fields, but the commutator function is supplemented by
a delta function 6(x* —«’,). Considering as an example
the scalar case, one gets

O-®)o(x;k2)=0
and

[o(x;62), o (' 5672) | =i (x = " ;12)0(K* = k?) (1.11p)
The fields &), (x) and 8 ) (x) are respectively the posi-

dra
tive and negative frequency parts of real generalized

free fields &, ,(x)®% ,(x), where

8, (0 =:Z;; ) +eQ (), (.11c)
@d*:a(x)=<l>;;’;a(x)+<I>f,;z,(x). (1.11q)
If d=d, +id,, one gets (for s =0)
[8,(x),8,0)]= [@d* (x) ,<1>¢*(0)]
=if ()12 A (3PN die 1.12)

The plan of our paper is the following: In Sec. 2 we
introduce the representation spaces for orbits O, and
O;, and we shall relate them with the Hilbert space of
“one-particle states”® of generalized free field.

In Sec. 3 we shall construct the generators of the
Weyl group describing the transformation properties of
the Licht fields. Because any real generalized free
field can be written as the following linear form?!!

&, o(0) = [ dPE®) 68 (x362) +h.c., (1.13)

where &(k*)eS’(R,) and £(x?) = £,(¥®) +i£,(«®). The gener-
ators for Licht fields are also the generators for gen-
eralized free fields. In the derivation of these genera-
tors we shall use the observation that the Lagrangian
for free Licht fields™ is invariant under the following
transformation:

B (x;k%) — @' (x36%) = p(lx;63 /). (1.14)
Finally we derive in Sec. 3 the formulas (1.10). It
should be mentioned that our results are consistent with

the scaling properties of the Green’s functions. Indeed,
one can prove that the commutator (1.12) is proportion-
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(1.11a) .

al to the distribution (x?)¢, and the causal propagator is
proportional to (x? -40)?, Similar scaling properties,
implying dimensionality d, will have also the Green’s
functions of the generalized free field (1.11) with spin.

1. IRREDUCIBLE REPRESENTATION SPACES
FOR THE WEYL GROUP (ORBITS O, AND 0,;)
AND GENERALIZED FREE FIELDS

Let us consider the realizations of the representa~
tions related with the orbits O, and O,, on the Hilbert
space ¥, of square-integrable functions ¥(p, ), where
A takes discrete values A=-s, -s+1,..., +s, and the
scalar product is defined as follows:

A=,
v, us= 0 [

_V(p, Me(pD¥(p, Md'p,  (2.1)
Uv.

A==5" 7V,
where «(p?) = (p%)* leads to the choice of the unitary
representations for d= a +iB(- % < < ~ =), Further we
shall put «(p?)=1.

If supp ¥ e I—f*, we can describe in 3¢, the representa~
tions related with orbit Q,; the choice supp ¥ ¢ V. leads
to the realizations of the representations associated with
the orbit O;.

In space 3¢, the algebra (1.3) of the generators of
Weyl group can be represented by the differential oper-
ators (1.2). In particular we have

P,=p,, D=pu£:+2. 2.2)
The eigenfunctions satisfying the equations
Py, A% =¥ (p,,50%), @.32)
D¥(p,,, \yd) =d¥(p,,x;d) (2.3b)
do not belong to 3¢,. Indeed, one gets (p*=p% - p?)
¥(p,,xp5) =a-6%(p, -15), @.4a)
¥(p,,d) =a - (p)¥>, (2.4pb)

In order to get from the solutions (2.4a) the square-
integrable functions it is sufficient to take the four-di-
mensional wave packet of eigenfunctions

¥(p, = [ AU (p,, N p2)dp°, @2.5)

where fc L,. In the case of eigenfunctions (2.4b) it is
not sufficient to take the wavepacket

(2,0 = [ duF ¥ (p,, N0 (2.8)

because of the infinite volume of the domain between
two arbitrarily close hyperboloids p* and p* +Ap®. In
order to get the element of 3¢, we should smear out
(2.6) with the three-dimensional test function ¢(p), be-
longing, for example, to S(R,).

The eigenfunction (2.4b) describes the sum of the fol-
lowing three irreducible representations!®:

U (P, hid) =a’8(xp)(p2) @127, (2.7)
T (p,,Md)=a'(p?)e/7 (2.7b)
Because for arbitrary f(p?)
9
pu 35 AP =2 %f(pz) (2.8)
13

and further, putting (p?)* = 6(p*)(p*)*, we get
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Pu 3 (PIZ=276( 7)) + 202 (2.87)
The splituinto the part (2.7a) and (2.7b) (separation of
orbit O, from O, and O,) does not affect the eigenvalue
equation only if Re d>0. On the other hand, the split in~
to the positive and negative frequency parts (separation
of orbits O, and O,) implies in similar way that Red>3.
It is interesting to note, that the last condition is also
required if we wish to obtain in the Kallen—Lehmann
representation (1.12) the positive-definite spectral
function.

The functions ¥(p,, ) €3, can be interpreted as the
wavefunction describing one-particle state® of general-
ized free field (1.13). For simplicity we shall consider
here the scalar case (s =0). Let us smear out (1.13)
with a test function fc S(R,), and denote

¥ = [ @ xxflx)@,(x). 2.9)

Using the decomposition formula for the field (1.11)

3
6059) = Ga7s [ GacgTs €174 alpi) +H.C.},

2.10)
where
[a*(p,«*),a(p’ ,«"*)] =5%(p - p")0(K* - k"), (2.11)
and introducing the vacuum state as follows,
a(p,)|0)=0; 2.12)

one can define the “one-particle” states with definite
4-momentum p, =(p,w,) by the formula

lpsk? ) =a'(p,®)|0) @.13)
and one obtains
{p, D', k") =6%p, - p.)/20,. (2.14)
Writing
lg)=lo)=@m2"2[ dipf®,po)- @p)"2- £p7)|p51°),
2.15)

where f denotes the Fourier transform of f, one gets

(ele)=[ dp¥(p¥(p), (2.16)
and

¥ (p) =) ¥2f (p, po) £( 12 — PP).

The eigenfunction (2.4a) can be obtained for any
choice of the continuous spectral function £(x*) by the
limit f — 6*(p - p,). The eigenfunctions of the dilatation
operator can be obtained by the choice &(k?) = (k2)(¢/2!
and 7 - 1. Both limits obviously are leading outside of
the class S(R,) of the test functions.

2.17)

I11. THE GENERATORS OF THE WEYL GROUP
AND GENERALIZED FREE FIELDS WITH
DEFINITE DIMENSIONALITY

The field equation (1.11a) and the commutation rela-
tions (1.11b) can be derived from the following
Lagrangian'4:

Lozfdszd’x Lo(x;x?),

where

(8.1)

J. Math. Phys., Vol. 15, No. 3, March 1974

Lo(x;e?) = =3[, 6 (x;62)8% ¢ (x;6%) = 2 p (%36 (x36%)].
3.2)

The Lagrangian (3. 1) is obvious invariant with respect
to the transformations of the Poincaré group (<% is a c-
number scalar). The invariance with respect to dilata-
tions implies that the field operator &(x;#*) transforms
according to the transformation law (1.14).18

One can use the formalism, based on Noether theo-
rem, which allows to express the generators of Weyl
group as bilinear form in field operators ¢(x;x2). The
infinitesimal transformations of the Poincaré group are
locally generated by the energy-momentum density
T°,,(x), which can be written as follows:

T°, (0= [dT®, (x;12), (3.3a)
where
7%, (500) = 5t 8 M) g Laii).  (3.30)
Introducing

P = [P (), (3.4a)
where

B3 = [ d3x TS, (x;62), (3.4b)
we have the relations

B5,(2), plx3) | =2, o35 (K = 12), (3.52)

B, o(x;8) ] =2, ¢(x;6). (3.5b)

Let us introduce now the infinitesimal transformations
(1.4) and (1.7),

,=Q1+6lx,, 6x,=0l-x,,
k%= (1 -200)2, 6" ==251- K.

(3.6)

The transformation law (1.14) can be written in its in-
finitesimal form as follows:

5(x38) = az(x, L) - 28 a—arw(x;x"’)) @

The invariance of the Lagrangian (3.1) implies the in-
dependence of the hypersurface o of the following
integral

or(o) = a0 f ¢ (s - b0t
+ Lo(x;Kz)Gx“>; f do* f i [T“,(x;Kz)ax”

+ 37;—%0?)(8% ¢>(x;K2))] o2

= [do ISP () + 5P (1)}l (3.8)

where
SV ()= [ AT, ()2 = T, () - 2,

SLZ)(x)Z—ZdeZ'Kz' <5_¢—36607<2—)-aa7¢(x”(2) (3.9Db)

(3.9a)

The formulas (3.8—9) are valid for any Lagrangian den-
sity, invariant under the infinitesimal transformation
(3.6). Choosing in particular the form (3.2) and putting
do,=(d’x,0,0,0,), one gets
6F()=Dol=D____(t)61+D

ass?) 8L, (3.10)

geom
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where 8F(t,) =06F(t,), the “geometric” part of the gen-
erator D is expressed by means of the formula

ﬁgeom(t) = f nm(x)xmdsx’

and

Do) =— 2fd3xfdx2 - k% o (x;67) - aa_xz o(x;). (3.11b)

(3.11a)

It is easy to check that

o¢(x;K2)= i'[D, ¢ (x;k%)]61 (3.12)
which follows from the relations

[o(x, 63, p(x', £56%)] =0, (3.12'a)
[0 (%, ;6%), b (X', ;' D} =63 (x ~ x")8(x% - k'?),  (3.12'b)
and'®

[p(x, £;%), (3/ 3P (%', ;1) ] =0. (3.12%)

The relations (3. 5b) and (3. 12), integrated with the
spectral function £(«%), lead to the transformation prop-
erties of the generalized free fields. One gets from
(3.12) that!’

P, 8,(x)]=2,2,(x), (3. 13a)
1D, 9 (x)] = (x 8% + d) P (x), (3. 13b)
where
300 () = 1D pyeel®) 2 2)]
=-2f02.c25(x2)[,<2 L6 D). (3.14)

Let us write
K1) o g 0308 = g [£() - (3]
— &N x;iB) - (d/dBY[E(kY) - 2]

(3.15)
One obtains
d$®(x)= & (x) + boundary term, (3.16)
where
g'(ﬁ)zzﬁzng(ﬁ) (3.17)
and'®
boundary term={(k% - k%« = (x;i2)}| 2, (3.18)

where supp £=/a, b].

The generalized free field with definite dimensionality
parameter is described by the following equation for the
spectral function:

d

E(P)=d- E(x¥)=2d °(E? K"*z;(xz)) (3.19)
and has the solution £(k?) = (k*)@/?-!, We get, therefore,
the result (1. 10a—b) by considering, respectively, the
positive (orbit O,) and the negative (orbit Q,) frequen-
cies. In order however, to write Eq. (3.19), one has to
show that the boundary term vanishes, i.e.,

lim (Aa)d/ad)(é)(x;AZ) =0.

AZaw

(3.20)
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The meaning and validity of the relation (3. 20) is pre-

sented in the Appendix.

The generalization of our results to the case with
spin does not present any particular difficulties. Let us
consider for example the vector case (s=1). The gen-
eralized free field with spin one can be written as
follows!®:

8., (0)= [ E£(KD)¢ . (x;kD)dis, (3.21)
where
(O - )8~ 3,08,]¢" (x;¢%) =0, (3.22a)

(¢, 06363), D2 56D =i(g 0 = 8,8,/ KF)A(x - 255 0(kP = K?),

(3. 22Db)
and, consequently, it satisfies the Lorentz condition
3, (x)=0. (3.23)
We have
[8,,(0), g, ()]=g,. [ EAAGK =2 ;B A (3.24)

-9, a,,f [£(3)/ KBlAa(x - x' s k%) di®
= (€= 9,8/0) [ E(KD)A(x = x' ;6% dK2,

One can check, by writing the Lagrangian leading to the
relations (3.22a—b) that

U193 Ut = ¢, (12562 /1%) (3.25)
and, choosing £(x%) = (k2)*/2-!, one obtains
Uyd,,, (x)UT =1%8,, ,(1x). (3.26)

The transformation properties of generalized free
fields with higher integer spin are identical to the ones
given by the formulas (3. 25) and (3.26), provided that
the corresponding Licht field (pu!"_“ (x;x?) satisfies the
subsidiary conditions?° °

8u¢uu3.. .us(x;’cz) = 0;
b geenn (HHE) =0 (3.27)

Let us consider now briefly the hali-integer spins.
The Lagrangian for Licht field with spin one-half looks
as follows:

Lo(x) = [ di®[¥(x;k%) (7, 8" — x)¥(x;i®)]. (3.28)

The invariance with respect to the dilatations implies®

U ¥ (kU =129 (1x;6%/12). (3.29)
Introducing
14-5)
Yy(0) = [ (8),F u(x;it)ded, (3. 30)
one gets
U () U =1 ,(1x). (3.31)

The formula (3. 29) characterizes the transformation
properties of any Licht field with half-integer spin pro-
vided that the corresponding Licht field satisfies ail the
required subsidiary conditions. 2

In such a case the relation between the dimensionality
parameter and the power behavior of the Kallen-
Lehmann spectral function [formulas (3.30) and (3. 31)]

also remains valid.
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APPENDIX

Because the field operator ¢(x;x%) is an operator-
valued distribution with respect to «%, we shall con-
sider here the following operator:

¢ o(x3k3) = [ dr"a(k? - k3 (k'})% (x;kP), (A1)
where a€D, @20, supp a€[-1,+1], and
[drta(i®)=1. (A2)

The field operator ¢,(x;x3) describes a generalized free
field with the positive-definite spectral function
(Re d>=3)

[0 alx;1d), Dalasig)]=i [ dr'®eP(k§ - k%)
X (KIZ)ZRe "A(x - x';K'Z). (A3)
In order to show that the operator ¢, (x;«%) vanishes
strongly as an operator-valued distribution in S, i.e.,

that for any choice of «, satisfying the conditions spec-
ified above, we have

Lm||(f, 9o(KB) || =0 for every fes, (A)

2
Ko - 20
we should prove that
Lim|| (, ¢ (BN Py > [ =0, (A5)

K&= w0
0

where the state IP 5 > is created by the polynomials of
the field ¢(x;k?), smeared out with respect to both vari-
ables x and «%:

|Pw=IL(78X,, ¢)]0), (46)
where f; € S(R;), X, S(R,), and
(fi®X,, p)= fdrch,(Kz)fcfxf,(x)cp(x, %35, (A")

Proof: In order to show (A5), one should observe that
the norm (A5) is a product of the following three types
of factors:

O] (X, PIF;® X, $)|0), (ATa)
O, pu(BNf;2X,, )]0), (ATo)
©[(f, o(BN(f dalEN]0) . (ATc)

The first factor is bounded, and the second one and the
third one vanishes in the limit «¥~«. In order to show
this statement for the term (A7b) let us observe that

(0] (f; dolrd), (f,8X,, 0)]0)
= (2m)° [ dit a1~ KB) « x , (k%) (KB)Pe ¢

X/-zd:_{fj(py wn)’ (AS)
where w,= (p* + «%)'/%, Because
£257(9)-7 B, w0 (49

<@t [ a%p| 7@ |78, wd|
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and
17,0 wd <A/ +[p)"(1 +®™<A/(1+ [p]) 1 + &)™,

one can write (Al0)
Epr = A’
/mf@) T 10 0d S T (A11)
and, assuming m >2Re d- 3,
O1(f, 9uld)), (f,2X,, 9)|0)
A2 Lol k)1 X, (k)" ¢ (A12)

G e
Bot/z, 5 (KB)2Re 4-1/2

44 ety P e e e (),
Zap  AHET ke

<A

The proof that the expression (A7c) goes to zero in

the limit k* . « can be given in similar way, under the
assumption that » >2Re d - %.

It is easy to show, using the decomposition of the
2N-point VEV of the generalized free field into the finite
sum of product of two-point functions, that every term
in the decomposition of (A5) into the products of (A7)
must contain either once the term (Alc) or twice the
term (ATb). This property implies the relation (A5).

QED

We see, therefore, that the eigenvalue equation [see
(3.16) and (3. 19)]

d®{ (x) = da{?(x) (A13)
is valid strongly as an operator-valued equation in
S'(Ry), i.e.,

(£, a8 - da) =0, (A14)

for any feS.

*On leave from the Institute of Theoretical Physics, University of
Wroclaw, Wroclaw, Poland.

U. Ottoson, Ark. Fys. 33, 523 (1967).

’H. E. Moses, Ann. Phys. (N.Y.) 52, 444 (1969).

3. Mickelsson and J. Niederle, Czechoslovak Academy of Science,
preprint, Prague (May 1970).

*G. W. Mackey, Bull. Am. Math. Soc. 69, 628 (1963).

For completeness one should make a remark that the representations
defined on the orbits O,, O; can be defined by means of massless
two-particle states . Similarly one can relate the representations on the
orbit O, with the superposition of massless particle and antiparticle
states. This way of interpreting the representations of the Weyl group
follows from the possibility of describing “one-particle states™® of a
generalized free field in terms of conventional two-particle states [see
for example A. Streit, Helv. Phys. Acta 39, 65 (1965); J. Lukierski,
Nuovo Cimento 60A, 353 (1969); R. A. Brandt and O. W. Greenberg,
J. Math. Phys. 10, 1168 (1969); A. L. Licht, Max Planck Institute,
preprint (1970)].

SWe shall use the expression “one-particle state” for a state created from
the vacuum by any linear functional of a generalized free field. We
should, however remark, that these states do not posess -all the
characteristics usually attributed to the particle states.

See, for example, L. Gross, J. Math. Phys. 5, 687 (1964); G. Mack and
I. Todorov, J. Math. Phys. 10, 2078 (1969).

®It should be stressed that in covariant theory of massless particles with
helicity X 2 1one should consider a field-theoretic formulation using, for
example, generalized Feymman or Landau gauges. In these gauges the
dimensionality of the nonphysical degrees of freedom is equal to the
dimensionality of the physical components, and the relation (1.5) can
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be written for a covariant field operator ¢ 4 , containing always some
redundant nonphysical degrees of freedom (with lower helicities).

The discussion can be easily extended to the representations related to
O, by assuming that the mass spectrum of the generalized free field is
purely space-like. Such a field can be called a generalized free tachyon
field.

104 L. Licht, Ann. Phys. (N.Y.) 34, 165 (1965) (scalar case).

U1t should be mentioned that the formula (1.13) is more general than
the one occuring in Ref. 10. We obtain the conventional
decomposition formula P, (x) = §d K ED)S(x;K7), if £(k?) is real.

2Such a free Lagrangian was first used by W. Thirring [Phys. Rev.
126, 1209 (1962)] in the field-theoretic description of the Zachariasen
model.

3The Lorentz-invariant distributions (p %) are defined for example by
Giittinger [see W. Giittinger, Fortschr. Phys. 14, 485 (1966)].

"The case with spin, particularly the generalized free spinor field, will
be considered at the end of Sec. 3.

5We see, therefore, that scalar Licht fields are also true scalars under
the transformations of the dilatation group, i.e., in the formula
U b(x3 AU = 1[I x;(x*/1%)], the dimensionality parameter d is
equal to zero.

!$The relation (3.12c) follows formally from the relation (3.12a) by
differentiation with respect to k'>. The field operator
Soy(x36%) = (d/d K)P(x ;K7 satisfies the following equation:

(mEs )¢(1)(x ;%) = &(x;K?), which follows from differentiation with
respect to k* of Eq. (1.11a). We obtain (O — k%)’dg)(x;k H=0.
Y"We write the relation (3.13b) for definite frequency part in order to
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incorporate in our discussion the case of representations of

the Weyl group, with complex dimensionality parameter. Because the
relation ®E(p) = 0( 4 po)P(p) is linear, one gets (3.13b) by
performing the Fourier transform of (3.12) and multiplying by
8(£po)-

%0ne obtains the formula (3.18) only in the case when the spectral
function &%) is continuous in the interval [a, ]. It will appear
further that this is a case of interest for our considerations.

We shall consider for simplicity here only real spectral functions
).

Licht fields with higher integer spin have been discussed in other
context by J. Lukierski, Fortschr. Phys. 21, 85 (1973).

21t should be mentioned that there is a possibility of using in (3.26) the
mass instead of the mass square as the integration variable. In such a
case the dimensionality of the Licht spinor field y(x; k) becomes
d = 1 instead of d = (1/2). If the integration in the free Lagrangian
is performed over the variable k, the dimensionality of a Licht
field in comparison with the massless stable case [see (1.5a)] ts smaller
by (1/2); if the integration is over k2, it diminishes by 1. This can be
deduced from the invariance properties of commutation relations
containing respectively factors 8(ik — k) or 8(k? —«'?).

The subsidiary conditions for the symmetric massive spinor—tensor
field Vo ,. . .z have been given by Rarita and Schwinger
[Phys. Rev. 60, 61 (1941)]. The case of general spinor-tensor field
Vaipy. . wtlig+ 191 5 11 . .Lug0,1 have been discussed
recently by Cukierda [see T. Cuklerda Nuovo Cimento
Lett. 4, 353 (1970)].
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An algebraic study of the irreducible representations of the complex Lie algebra s /(2) is presented in
this article. This study generalizes a former series of works of W. Miller. Though the list is not
complete, it gives hints as to the construction of a very vast family of representations.

INTRODUCTION

Though it is never stressed very clearly, Lie algebra
representations (which are not necessarily integrable to
representations of a corresponding Lie group) play an
important role in mathematical physics. Let us mention
some examples from physies.

(1) In potential scattering theories, an important con-
tribution was made by T. Regge. His famous idea
stressed the importance of the complex J. Plane and of
the corresponding particle trajectories. If one wants to
glue together infinitely many spins in an irreducible ob-
ject, or in any case if one wants to have complex J-
values, it is evident from elementary considerations that
no group representation of SU(2) can make it. One is
then brought to the study of local (i.e., Lie algebra)
representations of SU(2).

(2) In elementary particle physics, we distinguish be-
tween external and internal symmetries: the external
(i.e., Poincare) symmetry group translates the postu-
late of the special theory of relativity, while the internal
fe.g. SU(3)] “symmetry” reflects, e.g., the behavior of
particles under strong interactions, their classification
and quantum numbers, etc.

The external symmetry is traditionally represented in
second quantized field theory by unitary representations
of the Poincare group, the group action being physically
clear,

In very high energies, which correspond to very small
distances, there is no physical reason to believe that the
external symmetry acts in a group manner. In this case,
therefore, even the external symmetry might very well
act in a Lie algebra manner. For internal symmetries,
we have no reason whatsoever to prefer the global to the
local aspect, the “internal space” being fictitious.

Moreover, it is very well known that if one wants to
have mass spectrum in an irreducible object, one cannot
take a unitary representation of a Lie group containing
the Poincar€ group, but rather one has to take a repre-
sentation of a Lie algebra containing the Poincare Lie
algebra, which can even be chosen so as to be integrable
to the Poincaré part.

These examples, as well as many others, show the
importance of the study of Lie algebra representations,
both mathematically and physically.

In what follows, we shall give a detailed study of one
of the simplest cases existing, that of algebraically ir-
reducible representations of the simplest complex simple
Lie algebra, sI(2).

From this point of view, this work is a direct contin-
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uation of the elegant works of W, Miller. We divide our
article in the following manner.

In Sec. 2, we give an equivalent formulation to the
Miller hypothesis, and we then construct and classify the
set of classes of irreducible representations satisfying
the most general spectral hypothesis for the representa-
tive of the elements of the Lie algebra which strictly
contains Miller representations and which is invariant
under the action of the automorphisms of sZ(2).

In Sec. 3, we expound a detailed algebraic study of
the enveloping algebra of sI(2).

We utilize these results in Sec. 4 to study the action
of the enveloping algebra automorphisms on the repre-
sentations that we obtained in Sec. 2. By this generali-
zation of the process of Sec. 2, we obtain a new series
of representations.

In Sec. 5, we construct other representations that
cannot be obtained by the previous technique.

1. NOTATION AND PRELIMINARY LEMMAS

Denote by (Y, F,G) a Weyl basis of sl(2), Y being the
regular element and F and G corresponding nilpotent
elements,!'? with the commutation relations

[Y,Fl=F, [Y,G]l=-6G, [F,G]=2v.

{/ is the universal enveloping algebra of s/(2) and Z
the center of {/, which is written as

Z=C[Q], where Q=GF+Y+Y?=FG-Y+Y?
(Casimir element).

By a representation of s{(2) we mean a linear repre-
sentation in a complex vectorial space not reduced to
{0}. By the universal property, every representation of
s1(2) is a representation of the associative algebra (/,
and vice versa.

Definition 1.1: Let 7 and 7’ be representations of sl 2)
on V, V' respectively, 7 and 7’ are equivalent if there
exists an isomorphism U of V and V’ such that

Uen(X)=w(X)oU for all XesI(2).
Definition 1.2: A representation is (algebraically) ir-

reducible if the only invariant subspaces of the repre-
sentation space are {0} and the space itself.

From the Poincaré—Birkhoff —Witt theorem, the rep-
resentation space of an irreducible representation is
(necessarily) of at most countable dimension.

Schur’s well-known lemma for finite dimension is gen-
eralized to infinite dimension. ®*

Copyright © 1974 American Institute of Physics 350
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Lemma 1.1: The commutator of an (algebraically),
irreducible representation is reduced to scalars,

{/ being a noetherian algebra for which the only ele-
ments having inverses are the scalars,? one has the fol-
lowing lemma:

Lemma 1.2; Given a nonscalar element X of (/ and an
element x of C, there exists (at least) one irreducible
representation 7 of sI(2) such that n(X) has the eigen-
value A.

One easily obtains by induction the following formulas
in (/:
Lemma 1.3;: Let P€Z(X); one has
P(Y)F"=F"P(Y +n),
F"P(Y)=P(Y -n)F7,
P(Y)G'=G"P(Y —n),
G"P(Y)=P(Y +n)G".

Let a€Z{X] be the polynomial =@ - X —X?, One has
GF=a(Y), FG=a(Y -1), from which one deduces:

nzp: GFt=a(Y+n=1)--a(Y+n-p)Gr?
=Gt a(Y+p~-1)..a(Y+1)a(Y);

n<p: GFP=Frra(Y+p-n)-. a(Y+p=-1)
=a(Y) - a(Y+n=1)Ftm

nzp: PG=G?a(Y~n+p-1).- a(Y -n)
=a(Y_1)... a(Y_p)Grl'P;

n<p: FPG"=a(Y =p) - a(¥ ~p +n)Ft
=Fr"a(Y ~n) - a(¥Y ~1).

2. REPRESENTATIONS OF s/{2) FOR WHICH
THE REPRESENTATIVE OF ONE ELEMENT
(AT LEAST) HAS AN EIGENVALUE

In this section (Y, F, G) is a fixed Weyl basis of sI(2);
Ty, 2y designates the set of classes of representations
which satisfy the property quoted in the title.

A. The Miller representations

In Refs. 5 and 6, Miller constructs (in particular) the
irreducible representations 7 of sI(2) which verify the
following properties:

(a) The spectrum A of 7(Y) is countable, of the form
A={x,=xr,+s,s€5CZ} (Z=integers).
(b) Each eigenspace sz is one-dimensional, and
V=E&5%,
His result is (cf. [5])

Theorem 2.1: Every irreducible representation of
sl(2) satisfying conditions (a) and (b) is isomorphic to a
representation from the following list:

(1) The representations D(I,m,), where [ and m, are
two complex numbers such that / is admissible (i.e. ,
either I +1/2=pe!*, p>0, 0Sp<rmori=-1/2)

0 <Rem,<1, and neither m,+! nor m,—1! are integers.
The spectrum

A={my+n, nc z}.
(2) The representations ¥ defined for all admissible
Z,
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A={~1-1-n,eN} (N=integers=>0).

(3) The representations {l‘ defined for all admissible [
different from (k —1)/2(Vhe N), with

A={l -n,neN},
(4) The representations 4/ defined for all admissible !
different from (k ~1)/2(Vh e N), with"
A={-1+n, neN},

(5) The representation 4! defined for all admissible
1, with

A={l+1+n,neN}

(6) The representations D(2r) defined for all h, 2h€ N,
with

A={h-n, neN, 0sns2h}.

Let us give an equivalent formulation of the hypotheses
of Miller.

Proposition 2. 1: An irreducible representation 7 of

sl(2) satisfies hypotheses (a) and (b) if and only if #(Y)

has an eigenvalue.

Proof: Let V be the representation space, ¢ a non-
null vector such that 7(Y)¢=2r¢. By Lemma 1.1, 7(Q)
=gql, g€ C, and we have (using Lemma 1. 3):

H(YF“)(P= ()t+s)17(Fs)¢, ﬂ(YGs)(P:(X—S)Tr(G’)ga,
TGP g=[g = A +s -1 +s)n(Fo,
1(FG)o=[g- (O -s+1) - 1)]n(G)e

for all integers s, s =1. Thus, we have the invariance
of the subspace generated by {¢, 7(F*)p, 7(G%)¢@, s an
integer > 1}. QED

B. Construction and classification of the
irreducible representations of 5/(2) for which the
representative of a regular element (at least) has
an eigenvalue

We shall denote by

A" = Aut[sl(2)], the group of the automorphisms of
sI(2);

i,,9,, the automorphisms of sI(2) defined by

i,(Y)=Y,i,(F)=pF,i,(G)=1/4G,
Q,(Y)=-Y, @, (F)=uG,2,(G)=1/uF,
where pe C -{0};

7,, the set of the classes of infinite-dimensional irre-
ducible representations of sI(2) for which the represen-
tative of a regular element (at least) has an eigenvalue;

D, the subset of 7, made up of the representative of
type D(I,m,);

[’ (resp. [°), the subset of #, made up of the repre-
sentations of type ¥ (resp. +).

We designate by the same letter a class and one of its
representatives.

Let 7 be a member of 7,; we denote by O(n) the orbit
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of 7 under the action of A",

Let us first show that the study of 7, is equivalent to
that of the action of A’ on/), /*, and /[".

Proposition 2.2: 7 belongs to 7, if and only if there
exists 7’ belonging to /), /*, or /" and A belonging to A’
such that 7=17"-A4.

Pyroof: Let X be the regular element such that 7(X)
has an eigenvalue, 4, an automorphism of s/(2) such
that A, Y€ CX (cf. Ref. 2). The representation 7, =7 A,
satisfies the hypotheses of Proposition 2.1.

If 7, is of type ¢, then 1,=7, 02, =7cA, R, is ¥I; in
this case one takes A=A4,Q, and 7’ =7,. If not, 7, and
A, are appropriate. QED

A simple calculation proves the following propositions.

Pyopositions 2.3: When 7 belongs to /) and X belongs
to s1(2), 7(X) has an eigenvalue if and only if X=)\Y,
A€ C.

Proposition 2.4: When 7 belongs to /*or /-~ and X
belongs to si(2), n(X) has an eigenvalue if and only if

X=2,Y +,F.

Remark: Such an element is regular if and only if
Ao #0.

Corollary: When 7 belongs to [* or /-, X belongs to
sl(2), and 7(X) has an eigenvalue, X satisfies one and
only one of the following assertions:

X regular and #(X) diagonalizable;

X belongs to CF, w(X) has the single eigenvalue 0,
which is of multiplicity 1.

We can now carry out a partition of 7,.

Pyoposition 2. 5: Let 7 be a member of /), 7’ a2 mem-
ber of /* or [~; one has O(x)N O(w')= 0.

Proof: Let us suppose that the intersection is not
empty; that is, that there exists an A in 4’ such that
7 =moA; then AF, which is nilpotent, would be satisfac-
tory: m(AF) has an eigenvalue, which is in contradiction
with Proposition 2. 3. QED

Pyoposition 2. 6: Given 7 and 7’ belonging to [* or /-,
(1) If 7 is ¥, and 7 is 41’ with [ #1’, then O(m)N o)=0,
@) If 7 is +7 and = is #] then O(r) N O(r’) = 0.

Proof-
(1) is evident since AQ =@ for every A in 4’.
(2) Let us suppose that 7 =7 0A; then 7(AY) should have
-1-1 as “maximum?” eigenvalue. This is in contradic-
tion with Proposition 2. 4. QED

Let /)’ (resp. [’*, resp. ['°) be the union of the orbits
under 4’ of the elements of /) (resp. /*, resp. /).

Theorem 2.2:/)’, [*, and [’~ form a partition of ,.
The proof results from Propositions 2.2, 2.5, and 2. 6.
More precisely, inside /)’, /’*, and /’" one separates
the orbits with the help of the following propositions.

Proposition 2. 7: Given 7 and 7’ belonging to /), 7 of
type D(I,m,) and o’ of type D', m’,).
(1) When [ #1’, then O(r)N O(x’*)=0.
(2) When [=1’, then O(w')=0(7) if and only if 7 =704,
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where A is one of the automorphisms i, or ,, 1€ C - {0}.

Proof: (1) is evident. (2) If O(s)= O(x’), then there
exists A such that #/=7A. Since 7(AY) has an eigen-
value, AY =+ Y (Proposition 2.3), and it is easy to see
that A is necessarily of the form given. QED

Proposition2. 8: Given r and 7/ belonging to /* (resp.
[7), then O(r)=0(«') if and only if r=7+A, where A is
one of the automorphisms

A=e®Fo , 2eC, pe C-{0}.

Proof: Let us suppose O(r)= O(n’), there exists an
automorphism A such that 7’ =7 .A. Then 7(AF) has the
eigenvalue 0 and AF is nilpotent; thus AF= uF (Corol-
lary (2.4), pe C-{0}, and it is easy to see that A is of
the form given. QED

Since A’ acts transitively on each orbit, it only re-
mains to determine the stabilizers.

Proposition 2.9: Given 7 belonging to /),
(1) if 7 is D(I,m,) with m,+0 and m,+1/2, the stabilizer
of 7 is made up of the automorphisms i,, pe C -{0}.
() if 7 is D(,0) or D{l,1/2), the stabilizer of 7 is the
group of the automorphisms 4, and Q,, pc C-{0}

Proof: The proof results from Proposition 2. 7.

Proposition 2.10: If 7 belongs to /* or /-, the stabi-
lizer of 7 is made up of the automorphisms ea‘“Foiu s
reC, pe C ={0}.

Proof: The proof results from Propositions 2. 6 and
2.8,

We can now carry out a classification.

(a) Let C be the set of pairs of complex numbers
(I,m,) satisfying: | admissible, 0 < Rem,<1, [ =m, and
1 +m, nonintegers; R the equivalence relation on Cde-
fined by:

either m’,=m,
or }if Re m,#0
my==my+1

(1, m,)
R ,m')l=0 and

or m’,=xtm, if Re m,=0.

According to what precedes, (/R is in bijection with the
set of orbits of /) under 4’.

Theorem 2.3: The elements of /)’ are characterized
by:
(1) an element [I,m,] of C/R;
() An element A of 4’ /{i,} (where {i,} is the group of
automorphisms i,, € C -{0}) when [7,m,]#[7,0] and
[,1/2]; an element A of 4’ /{i, 2,} (where {i,,Q,}is the
group of automorphisms i, and Q,, u€C-{0}
otherwise,

Proof: Given 7 belonging to /)’. There exists one and
only one orbit O such that 7€ O; Thus we conclude (1).

Now, depending on the case:

If [1,m,] #[1,0] and [1,1/2], one knows that the stabi-
lizer of the two elements of ) in O is {i,}.

If {I,m,]=[1,0] or [1,1/2], then the stabilizer of the
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element of /) in O is {i,, 9 }. QED

(b) Let us now treat the case of L'* and L'".

Theorem 2.4: The elements of L’* (resp. L'") are
characterized by:
(1):A complex ! satisfying the hypotheses of the series
-4 (resp. +1) of Miller;
(2) An element A of A’ fle*®F i}, where {e2Foi } is
the group of automorphisms of the form >0 ,x€C,
peC-{o}

Proof: Given 7 an element of /’* (for example), it is
clear that O(s)N /* contains only one element (Proposi-
tion 2. 6) characterized by I, of which the stabilizer is
{ea®F o4} (Proposition 2. 10). QED

Remark: One can see that the classification of 7, by
Theorems 2.3 and 2. 4 is equivalent to the one we gave
in Ref. 7.

C. Construction and classification of the irreducible
representations of s/{2) for which the
representative of a nilpotent element (at least)

has an eigenvalue.

We denote by 7, the set of the classes of such repre-
sentations.

Pyoposition 2. 11: Given 7 an element of 7,. We sup-
pose that there exists a nilpotent X € sl{2) such that 7(X)
has the eigenvalue 0. Then 7 belongs to ,.

Proof: There exists an automorphism A of sI(2) such
that AF=X. Let 7" =70A and let ¢ #0 be a vector such
that 7(X) ¢ =0. According to Lemma 1.1, 7(Q)=gI,
geC.

Thus, we have go=7(G)7' (F) o+ 7' (Y) ¢+ 7 (Y) o,
[—g+ 7 (V) + 7 (¥?)] =0, which proves that 7’ (¥) has
an eigenvalue. QED

As a result, we are interested in the elements of 7,
in which the representative of a nilpotent element has an
eigenvalue different from 0. Let us first construct a
particular representation from which we shall obtain all
the others.

Theorem 2.5: When in an irreducible representation
7 of s1(2) 7(F) has the eigenvalue 1, there exists a basis
fa» n €N, of the representation space V such that:

(V) fy= [ 1E) f,=[0(Y) =117, 7(Q) f,=q f,,q €C,
TG)f,= (M) +1T" (g fo ~f, =f>)-

Conversely, if for a representation of s/(2) there ex-
ists a basis f,, €N, of V on which the representation
acts as above, then 7(F) has only the eigenvalue 1 which
is of multiplicity 1; the representation is irreducible
and characterized (up to equivalence) by q.

Proof: The direct part results immediately from the
formulas of Lemma 1.3 on setting f, = n(Y)*f,.

Conversely, calculation shows that #(F) has only the
eigenvalue 1 and that it is of multiplicity 1 (keeping in
mind the fact that 7(Y) has no eigenvalue). Now let V,
be the subspace of V generated by (f,,f,,...,f,), and let
X #0 be an element of V.

1(F=1)XecVv

n-1°

thus, there exists an integer k£ such
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that 7(F —1)*X=0 and 7(F —=1)*1X #0, That is,
T(F=1)*1X=xf,, ae C-{0}.

Now if W is an invariant subspace containing a vector
X which is not zero, according to what has just been
said f,e W, Thus W=1V. QED

Let us direct the study of 7, to that of the set of the
representations of Theorem 2.5, which we denote by

M
Pyoposition 2.12: 7 belongs to 7, — 7, if and only if
there exists 7’ belonging to /], such that O(m)=O(r’).

Proof: Let X be a nilpotent element such that #(X) has
an eigenvalue p#0, There exists an automorphism A of
sl(2) such that AF=(1/u)X. Let 7 be the representation
moA. 7’ belongs to /), and O(r)= O(7"). QED

Pyoposition 2.13: When 7 and 7’ belong to /), and
m#7', one has O(m)N O(w )=,

Proof: The proof follows from Theorem 2.5.
A simple calculation proves the following proposition.

Proposition 2. 14: When 7 belongs to /4, , 7(X) has an
eigenvalue if and only if X belongs to CF,
Thus, one has

Pyoposition 2.15: Given 7 an element of /), the stabi-
lizer of w is {e**F 1< C}.

Pyoof: In fact, v=ncA implies that 7(AF) has the ei-
genvalue 1, and hence that AF=F according to Proposi-
tion 2, 14, QED
Let us denote by /4] the set 7, - ,.

Theorem 2.6: The elements of /! are characterized
by:
@t)gec:
(2) An element of A’ /{e**F}, where {¢**F} is the group
of automorphisms e®*¥, x c C.

Pyoof: The proof is the same as for theorems 2.3 and
2.4, with the aid of Propositions 2,12, 2,13, and 2, 15,

Remarks: (1) The classification is equivalent to the
one we have given in [7].
(2) Paragraphs 2 and 3 give a construction and classifi-
cation of the elements of 7, ,,.

3. THE ENVELOPING ALGEBRA OF 5/(2)

A. Decomposition of the adjoint representation

The term adjoint representation of sI(2) in {/ is ap-
plied to the representation defined by:

adg(X)=[g,X], gesi(2), Xl

Let (//,),c y be the canonical filtration of® //. The sub-
spaces [/, are stable for this representation. The re-
striction of the adjoint representation to //, is complete-
ly reducible; hence the adjoint representation itself is
completely reducible., Let us establish the exact form
of the decomposition. We reason by induction and sup-
pose that:

U"_l = [EB R(Fr1-2i;Qf1 Grei-2i1Qi )]
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D [? R(Fn-z2ipQls, Gn-z-zilez)] D...
2
\_M/

H

n2

R(F,G)@C
H, H,

—H, ®H_& - ®H OH,,

with
O0<i,<(n—-k)/2 if (n—k)is even,
0<i,<m-k-1)/2 if (n-Pr)is odd;

where R{x,v) is the representation space of the finite-
dimensional irreducible representation in which the vec-
tor of “maximal” weight is » and the vector of minimal
weight is v, [for example, R(F,G)=s!(2)]. In addition,
we assume that the non-null elements of
H"_k=@ikR(F-k'2ikQ{k, G"*2i@l) are of degree (n —k). The
hypothesis of induction is true for ranks 0 and 1.

The only element (within a scalar multiple) of //,
which is of weight n is F"; thus this element necessarily
belongs to one of the irreducible representations which
decompose the restricted adjoint to (/. Let R(F", V) be
the representation space; since the only vectors of Un
of weight-n are the scalar multiples of G", one has

R(F",V)=R(F",G")(Theorem 2.1).
Since Q € Z and [/ is entire, one has
H = QH"_ZI?;R(Fn-z-zizQizﬂ , Gr22ia@izt)

=@ R(F™212Q2, G™22Q"2)
where "
0<i,<n/2 if n is even,
0<iy<(n-1)/2 if nis odd.

By the hypothesis of induction the non-null elements of
H’ are of degree n; thus H/,N (/ _ ={0}.

Moreover ((//_, ®H’)N R(F",G") is an invariant sub-
space of R(F", G") which contains neither F" nor G" and
thus reduces to {0}.

The dimension of the direct sum
U, OH,®R(F", G")
is
[((n+1)(n+2)(n+3)]/6,
that is, dim ¢/ QED

Theorem 3.1: The decomposition of the adjoint rep-
resentation of sI(2) in // is given by

U = n%o H" ’
where
Hy=C, H,=@®R(F"%nQ'n, G#nQ'n),
n
with

0<i,<n/2 ifnis even,
0<i <(m-1)/2 if n is odd,
with [/ = @

- Oij =n
degree n.

H,, the nonnull elements of H, being of
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Corollary 3.1: When X belongs to sl(2), the central-
izer C(X) of X in {/ is C [X,Q].

Corollary 3.2: When X, and X, belong to s{(2) and are
linearly independent,

CEINCX,)=2.

Proof: If one of the two elements considered is regular
(for example, X)), one is led to the case of ¥ and X, [by
automorphism of s/(2)]. Let 7 be an element of /). Since
X, is not a multiple of ¥, #(X,) has no eigenvalue (Prop-
osition 2.3). Let pe((Y)NC(X,). n(x) is diagonal, but
if u#Z, this implies that 7(X,) has an eigenvalue, which
is contradictory.

If X, and X, are nilpotent, one carries out an analo-
gous demonstration with an element of /), . QED

The decomposition of the adjoint representation per-
mits us to establish

Theorem 3.2: Let W be the subspace of {/defined by
W=&7,R(F",G"). One has / =W (@ -2){/,¥reC.
In fact, the decomposition of Theorem 3.1 can be written

U= ;@o @ -2)w.
Corollary: l/ is an infinite-dimensional free module on
its center Z =C[Q].

(This corollary has been demonstrated in a much more
general framework by Kostant )®

We are now able to determine the kernels of the finite-
dimensional representations.

Theorem 3.3: Let 7 be an irreducible representation
of type D(2n), 2n< N; then

Ker 1= @ R(F*,G?@®(Q-0,){/, where a,=n(n+1).
k®2n+1

Proof: Since F* belongs to Kern when k is greater than

or equal to 2n+1, we have the inclusion
—_ R )
X=,9 R(F,GY®@Q-a)lCKerr.

Since the sum @,,, | R(F*,g#) +X =l is direct, the di-
mension of {//X is (2n +1)?. Then, according to Burn-
side’s theorem,? dim {//kerr= 2n+1)%. Thus we con-
clude the theorem. QED

B. Particular automorphisms of (/

Let us denote by A the group of automorphisms of /.
We shall identify 4’ with a subgroup of A (each element
of A’ being extended in a unique way to an element of 4
by the Poincaré-Birkhoff-Witt theorem).

Theorem 3.4: Every element A of A satisfies AQ=Q.

Proof: Since A belongs to A, we have Z = C[Q]
= C[AQ]. Thus, AQ=2Q + ur, ucC,1+0. Now let 7 be
a representation of sl(2), of type D(2n), 7’ the represen-
tation 7’ — woA. Since A{/= (/, the representation 7’ is
also irreducible and thus of type D(2xn). That is,

(@) =nln+1).
Now,
(@)=a7(@) + u=nln+ 1)+ p.

This being true for all n, it follows that A=1, p=0.
QED
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Corollary 3.3: When A belongs to A , we have U
=AW@®(Q-2){/,vrecC.

Corollary 3.4: When A belongs to A, it induces an
automorphism of the quotient algebra B, ={//(Q =) {/ of
{/ by the two-sided ideal (@ —1)//.

We shall now characterize some particular automor-
phisms of /.

Theorem 3.5: The only elements of A such that AY=Y
(respectively AY = - Y) are the extensions to {/ of the
automorphisms {, (respectively 2,) of sI(2).

Proof: Given A belonging to A such that AY =Y. Since
AQ=@Q we have AFAG=FG. AF and AG belong to
[{/,l/] and neither can be of degree 0; thus they are of
degree 1 and have no component on Z in the decomposi-
tion {/{=Z@{{{,{/]. Thus they belong to sI(2). QED

ICorollary 3.5: Given A belonging to A. A belongs to
A’ if and only if there exists a regular element X of sI(2)
such that AX € s1(2).

Corollary 3.6: Let A and A’ be two automorphisms of
{/ satisfying AY=A’Y and AF=A'F; then A=A’,

Moreover,

Theorem 3. 6: The only elements A of A such that AF
= F are the automorphisms of the form e**, p e C(F).
The existence of such automorphisms is justified by the
following technical lemma.

Lemma 3.1: Given u belonging to C (F)= C[F, @], then
ad u is a locally nilpotent derivation of /. [i.e.,

VYV e//@n such that (adu)"(V)=0].

Proof of the theorem: One has [AY ,F]=F or, equiva-
lently, [AY - Y,F]=0. Let AY - Y=Z,,(Q)F*, where
2;(@) € C[Q][1,(Q)=0]. If we now set A’ = exp(—adZ,(1/
in,(Q)F), we obtain AY=A'Y, AF=A'F, and, accord-
ing to Corollary 3.6, A=A". QED
C. Abelian subalgebras of B, and {/.

We recall that B, denotes the algebra B,= Uz -nU.
(One may consult Ref. 10 for a detailed study of these
algebras. ) As Dixmier'® points out (without proof), the
properties of the abelian subalgebras of B, are analogous
to those of the abelian subalgebras of the Heisenberg al-
gebra A,. We give a proof of this assertion (using Ref.
11) in Ref. 12, The result is

Pyoposition 3.1:

(1) Let X be a non-scalar element of B, (resp. a non-
central element of {/). ThenC (X) is commutative.

(2) Let B be a subalgebra of B, (resp. of {/). The fol-
lowing conditions are equivalent:

{a) B is maximal abelian.

(b) There exists an element X of A with X ¢C (resp.
X #2), such that 8=C(X).

(c) Bis different from C (resp. from Z), and for all
y of B not belonging toC (resp. to Z) one has

B =C(y).

(3) Let x and y be two elements of B, (resp. of /) not
belonging to C (resp. to Z). [x,y]=0 if and only if
Cx)=CW).
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(4) In B, (resp. in (/) the intersection of two different
maximal abelian subalgebras is C' (resp. Z).

(5) Let 8 be a subalgebra of B, (resp. of {/) different
from C (resp. from Z) and C(B) be its centralizer in B,
(resp. in (/).

(a) If B is not Abelian, C (B) = C (resp.C(B)=2).
(b) If B is Abelian, C (B) is maximal Abelian.

(6) Let B be a maximal Abelian subalgebra of B, (resp.
of /), y an element of B, (resp. of(/), and p a nonscalar
element of C [X](resp. of Z[X]). If p(y) belongs to 3,
then y belongs to 8.

4. REPRESENTATIONS

A. Preliminaries and notation

When 7 is an infinite-dimensional irreducible repre-
sentation of s/(2), there exists a complex number X such
that Ker 7= (Q — ) {/ (according to Lemma 1.1 and Ref.
13). Thus 7 induces on passing to the quotient a faithful
irreducible representation of B,. Conversely, for every
infinite~-dimensional irreducible representation 7, of B,,
there exists an irreducible representation 7 of {/ such
that Ker 7= (@-x) {/ and 7, is induced by 7 on passing to
the quotient.

Let Al be the group of automorphisms of B,, II (resp.
Il,) the set of classes of infinite-dimensional irreducible
representations of {/ (resp. of B,). A (resp. A,) acts on
Il (resp. on II,): the image of 7 by 4 is 7" = 7oA.

Every automorphism A of {/ satisfies AQ =@ (Theo-
rem 2.2) and induces on passing to the quotient an auto-
morphism of B,. Incidentally, by Ref. 10 every auto-
morphism of B, comes on passing to the quotient from
an automorphism (at least) of (/. Consequently, to study
the action of A on II, we study the action of A, on II,.

Let us denote by ;4; the group of the automorphisms of
the canonical image of si(2) in B,, which we equally de-
note by sl(2).

Let us denote by /), (resp. =}, m) the set of the ele-
ments of II, induced by the elements of 0 of type D{,m,)
(r’esp. the element of II, induced by the representation
¥, resp. induced by the representation #]) satisfying
I(I +1)=2, and by 7} the elements of II, induced by the
element of /| such that the representative of the Casimir
element is x.

We denote by the same letter a class of representa-
tions and one of its elements, and by ({x) the orbit of
the element 7 of II, under the action of A,.

Remark: Theorems 3.5 and 3. 6 of Sec. 3 remain true
for A, with analogous proofs.

B. Spectral theory

Given an element 7 of II, and a vector ¢ of its repre-
sentation space, we shall term the annihilator of ¢
(written Ann ¢) the left ideal {X € B, |7(X) ¢ =0}.

Proposition 4.1: Let 7 be an element of /),, ¢ an
eigenvector of 7(Y) of eigenvalue v,. Then Ann
©=B,(Y -vp,).
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Proof: There exists a basis {f,,n € Z} of the space
such that

m(Y)f,=2fpy M\,=mo+n, 0<Rem,<l,
T(F)f,=a,fon, @,,8,#0, Vn,

TG fy= B, frmrs

©=f,, v,=X,. (see Ref. 5).

Let X=X, G"%,(Y)+Z,F* (Y)€ Amn ¢,p (Y)€ C[Y],
P (e C[Y]. 7(X)@=0 may be rewritten

{: D)8, Byent "’kEP;,(M) @yt @y fop=0

It results from this expression that
1,0,)=p,0,)=0 Vn,k QED

Corollary: Let I be an admissible complex number
such that I +1)=2x. Let v be a complex number such
that neither / + v nor [ — v is an integer. Then the left
ideal B,(Y -v) is maximal,

Proposition 4.2: Let ¢ be an eigenvector of 7;(Y)
[resp. of 7;(Y)] of eigenvalue v,. Then there exists an
integer k such that

Amn ¢=B,(Y ~v,) + B F**,

Pyoof: We carry out the proof for 7=mr,. There exists
a basis {f,, ne N} of the representation space such that

(YY) f,=\,f, with X, =1 —n.
T f,=a,f,, with {an¢0 if n=#0,

ao: 0)
7(G)f,=B,f,, with 8, eC-{0},
O=f Vo =2Np
1t suffices to show that Ann ¢CB,(Y —2,) + B, F*", Let
us first consider the case of an element X of Ann ¢ sat-
isfying 4%X =0.

Let X=Z,;u,(Y)G/, u,(Y)eC[Y]. The equality
7(X) (f,)=0 leads to

n[pj(Y)]fM:O Vj. That is, there exists
u,(Y) e C[Y] such that

wy (V) =u (V) (Y =x,,).
We thus obtain X=(Z,4,(Y)G/) (Y =2,) € B,(Y =),).

Let us suppose that all the elements of Ann ¢ of which
the degree in F is less than or equal to (n~ 1) belong to
B,(Y =),)+B,F*, and let Xe Ann ¢ satisfy d3X=n; for
example, X=2Z,u, (Y)F/ +... Ifn2k+1, V=X-p (Y)
Fre Ann ¢ and satisfies d3V <n -1; thus, X€B,(Y -),)
+B,F*1, If not, 7(X)f,=0 leads to or,--r @, , 1, (A,.,)=0,
vj, where the o, are all different from 0. Hence,
1y () =0 V5,

In particular, it follows that u (Y)F"€ B,(Y -x,), and
that the element V=X — u _(Y)F"€ Ann ¢ and satisfies
oV<n-1. QED

Corollary: Let v be a complex number satisfying one
of the following hypotheses:
(a) v==1=-1=k,kEN;
() v=1 -k, k€N, whenl#(r-1)/2, h € N;
then the left ideal B,(Y —v)+ B, F*"! is maximal.
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Proposition 4.3: Let ¢ be an eigenvector of 7 (F); then
one has Ann ¢=B,(F-1).

Proof: Let us recall that the only eigenvalue of #3(F)
is 1 and that the associated eigenspace isC ¢ (Sec. 2).
Let X=Z,(Y)G* + Z; 4, (Y)F/ € Ann ¢,2,(Y) and
u,(Y) e C[Y] with u,(¥)=0. Since 7)(X) (¢)=n?

[Z2 (VY +i-1) a(Y)+Z,p,(Y)] (¢)=0 and since
75(¥) has no eigenvalues, we have

Zn(Da(Y +i=1) a(¥)+ 2, (1) =0.

Let us reason by induction on the d% of the elements of
Ann ¢, Let us suppose d3X=0, or X=%,1,(Y)G*. One
writes

X=22(Y)G' (1 ~F'*)

+|:;x,(Y)a(Y)--- a(Y +i -1)] FeB,(F-1).
0

Let us suppose the property is true for rank (n —1);
let X< Ann ¢ be such that d$X=n, 1 (Y) is the coeffi-
cient of F” in the development of X. Then the element
V=X-p (Y)(F-1)¢c Ann ¢ and satisfies d%V <n-1.

QED

Corollary: The left ideal B,(F - 1) is maximal,

Proposition 4.4: Let 7 be an element of ,, ¢ a vector
of the representation space which is not an eigenvector
of 7(Y); Then Ann ¢ is not monogenic.

Proof: We make use of the notation of Proposition 4.1
and set ¢=2Z,,f,. The element y=1,(Y —x,)€Ann ¢.

If Ann ¢ were monogenic there would exist # and X
such that

X e Ann @,
y=uX.
On writing y =uX, we obtain
d%u=0 2 Bu=0
or and or
&KX = og 43 X=0.

If d%u=d%u=0,X is a scalar multiple of y, and the
proposition is true since B,y is not maximal.

Let us consider the case where d%« =0 and d} « #0;
then we have d% X =0, which enables us to write
u =; (VG
X=2,(Y)F*
R
y:?k (Y Y +4)GIF~.

One then has two possibilities:

} p(Y), A(VeC[Y];

(1) There exists % such that k>j v,. Then if &, (resp.
j o) denotes the largest ¢ (resp. the smallest j),

GroFio=p(Y)Gr o, p(Y)eC[Y].

Thus k&, = j,.
This leads to{u: p{Y)Go,

X=x(Y)F*,



357 D. Arnal and G. Pinczon: On algebraically irreducible representations 357

Since X € Ann ¢, A(Y)€ Ann F* ¢, However, this re-
quires that d3A(Y)=d%}y and is contradictory to y =uX
in the case where g,> 0. Only the case where k,=0 re-
mains, and then a previous line of reasoning is applied.

(2) There exists some j such that j = .2V k. One again
uses analogous reasoning., Finally the case dju#0,
d%u=0, and d3X=0 is deduced from what precedes by
the action of the automorphism £,. QED

Proposition 4.5: Let ¢=Z%_ p,f, (notation of Proposi-
tion 4.2, p,#0, be a vector of the representation space
m(resp. m;). There exists an element v of C [F]| such
that

Ann =B, (e®®Y -1 +p) + B, F*"
(resp. Ann ¢=B,(e*¥Y+1 +p + 1)+ B, F**),
Proof: One may choose the basis {fk,k e N}in such a

way that 7}(F)f,=f,.,, #>0. (It suffices to replace f, by
(ay oo 2,)Y,,k>0.)

We solve the equation
(Y + W F+-+ u,F)o=0~p) ¢

by reducing it to a linear system. Let y,--- p, be the
solutions and A the automorphism

A=exp{-ad[p,F + (u,/2)F* + ... + (u,/p)F*]}

The representation 7;0A is equivalent to n}, and ¢ is
the p™™ vector of the basis on which #]2A(Y) is diagonal.
Thus Proposition 4.2 is applicable. QED

To obtain the analogue of Propositions 4.4 and 4.5 in
the case of #}, we prove the following lemmas.

Lemma 4.1: Let ¢ be an eigenvector of 7(F),
V=54 x,7(Y) g, where \,€C,2,#0, X=34, u (Y)F/,
where u,(Y)€ C{Y], such that n7(X) ¥=0. Then there
exists u of the form Z,w,(Y)F*, where v (Y)e C[Y],
such that X =u(F -1),

Proof: my(X)¥ =732, 1, (Y)Z 2, (Y -j)]¢=0, and
since n3(Y) has no eigenvalue, 2, uj(Y)E,x,.(Y—j)’:O.

However, the term of highest degree in Y of such a
polynomial is the same as the term of highest degree of
the product p, p, where p, =%, u,(Y) and p,=Z, Y .
This then implies that p, =0.

Hence 73(X) ¢=m[p,(¥Y)] =0

By Proposition 4. 3, there exists # such that
X=u(F -1). The hypothesis d%u >0 is contradictory,
since duF <d%u. QED

Lemma 4.2: Let X and ¥ be as in Lemma 4.1. Then
one has 4°X=p+1.

Proof: We reason by induction on the degree in #3(Y)

‘of the decomposition of ¥, If ¥ is a scalar multiple of ¢,

the lemma is true by Proposition 4. 5. Let us suppose
the property to be true for all elements ¢ of the repre-
sentation space of the form

k
£=26m(Y), £,#0,k<p,
and let

241

=201 (Y) g, Ay, #0

Pl ‘
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Let us make the hypothesis that there exists an element
X of Ann ¥ of the form specified in Lemma 4.1 but of
total degree equal to p +1. According to Lemma 4.1
there exists u such that X=u(F -1) with d2u=0. It is
clear that one necessarily has d% =p.

Let us set £=#)(F—1). Since ¥#x¢, A C, £ is dif-
ferent from 0 and « belongs to Ann £.

Now £=2432,[m) (Y -3} - Y']o is of the form
ok E,m3(Y) @, with k=p. Thus the hypothesis of induc-
tion gives us d% =p +1, which is contradictory.

We can now establish

Proposition 4. 6: When ¥ is not a scalar multiple of
¢, Ann¥ is not monogenic.

Proof: Let ¥=24 x;73(Y) ¢, A, #0. One verifies easi-
ly that (¥ —1)*** belongs to Ann ¥. (However, when
E<p+1, (F-1)*¢ Ann ¥ according to Lemma 4.2.)

If Ann ¥ were monogenic, there would exist # and X
such that

{(F—l)’"“:uX,
XecAnn V¥

On writing the first equality, one sees that either
d%X=0 or d%u=0. In the first case, Lemma 4.2 proves
that d°X = p +1. Thus the proposition is true, because
B,(F -1)*" is not maximal. In the second case, we
write

u=21v,(Y)F* v (¥), 3, (Y), u,(¥)e C[Y],

X =20 (Y)F + 2, (Y)6

(F =10 =2 0,(Y)v(Y - 1)F* +}§ 1 (Vw (Y + )G F~,

\’\/\/ NP .
1) + @)

Let j,#0 (resp. k,) be the largest of the j (resp. the
smallest of the z) which occur. If we suppose that j, > %,,
we have d‘(’;(ujo(Y)VkO(Y+jo)GJ’0F’*0) >0, and this term
cannot disappear. If one then supposes that j, <k,, all
the G/ F* which occur may be written as p,.!(Y)Fk'f,

p,j( Y)eC[Y], k—j >0. Since j, is strictly positive, k&,
is'also. Thus (1) and (2) contain only strictly positive
powers of F. This is in contradiction with the hypothesis
(F=1p"1=(1)+(2).

There remains only the case where j,=%,, but then
the equation
ujo( Y)Vjo( Y +5,)GloFio=1

should be satisfied. This is impossible, since GioFio is

a polynomial in Y of degree 2j,. Since the hypothesis

that j, #0 is contradictory is each case, one concludes
that j,= 0, and returns to the first case. QED |

C. Orbits

Lemma 4.3: Let 7 be an element of IT,, 7 =704 an
element of its orbit, and ¢ an element of the represen-
tation space of 7 and 7’; then Ann_, ¢=A"[Ann_g].

Theovem 4.1: When 7 belongs to /),, one has
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O@NO @) =0mNQ @) =0mNO@)=0(m;)N O (x?)
=0@)N0 (Y =0.

Proof: None of the annihilators corresponding to =y
and r; is monogenic (Proposition 4. 5). However, for n
the annihilators of the basis vectors are monogenic
(Proposition 4.1), and for 72 the annihilator of the initial
vector is also (Proposition 4. 3). Thus:

O@NO (@) =0@n Om)=0@)N0 @Y=0@;) N0 (n)
=@ (Lemma 4.3).
Let us suppose there exists an A €A, such that
73=70A. The only monogenic annihilator corresponding

to 7} is B,(F—1). Thus there exists a complex number
v such that

B,(AF -1)=B,(Y ~v) (Lemma 4.3).

Consequently, AF=1+¢(Y ~»), ce C~{0}. This result
is impossible, since AF is strictly nilpotent and

1+¢(Y =) is strictly semi-simple [10]. QED

Proposition 4.7: When 7 belongs to [, the only auto-
morphisms A such that 7 «4 belongs toJare

i,, e C={0},
Quy [J.EC—{O},

Proof: Let us suppose that 7 is of type D(I,m,) and
7oA of type D(I,m}). Given Propositions 4.1 and 4.4,
there exists n € Z such that

B,(AY =m})=B,(Y ~m,+n).
Thus there exists v C such that
AY = vY + v(n - m,) + m).

Since Y and AY €[B,,B,], AY=vY by necessity [10], and
since the spectrum of ad AY is Z (the same as that of
adY), v=z1 by necessity. QED

Corollary 4.1: When 7 belongs to [, the stabilizer of
7 is

{i,,ue C={0}}, when 7 is of type D(l, m,) with m,#0
or 1/2;

{i, and @,, peC={0}}, otherwise.

Corollary 4.2: oA belongs to Il ,, if and only if 4
belongs to AJ.

Pyroof: If 7oA€Tl,,,,, there exists a regular element
z of s1(2) such that moA(z) has an eigenvalue (Theorem
4.1 and Section 2). Let A € A4} be such that A’Y =z,
7 =noAcA’ 7' (Y)=70AcA’(Y)=moA(z).

Now, by Theorem 4.1 7’ belongs to 0, and by Propo-
sition 2. 12 we have necessarily that A.A4’=i, or
AcA’=9Q,, ueC-{0}

Conversely, if A€ A}, 1oA(AY)=n(Y) has an eigen-
value, and A"'Y €s1(2). Thus 7eA€ L, ). QED

Remark: Since A} is strictly contained in A,, one has
actually constructed representations which don’t belong
to II,; 5, that is, for which no representative of any ele-
ment of s/(2) has an eigenvalue.
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Proposition 4.8: The stabilizer of 72 is {e**,u € C
(FI}.

Proof: Considering Propositions 4.3 and 4. 6 and
Lemma 4. 3, one writes

B,(AF -1)=B,(F~1).

Thus there exists £ € C such that
AF=tF—t+1,

and since AF and F belong to [B,,B,], AF=F.

Corollary 4.3: 170A belongs to I, ,, if and only if A
is of the form

e oA, ucC[f],A4 A

Proof: By arguments analogous to those of Theorem
2.6, me A€ II,, 5, if and only if there exists a nilpotent z
in sI(2) such that 7+A(z) has an eigenvalue y different
from 0. Let A’ <€A/ be such that A’F=(1/u)z. The rep-
resentation 7oA oA’ is equivalent to 7. Thus 4 oA’
=e™ y c C[F].

The converse is evident.

Remark: As before, one in fact obtains representa-
tions where no representative of the elements of si(2)
has an eigenvalue.

5. THE REPRESENTATIONS 7}

Let us denote by II; the union of the orbits under 4, of
%, m;, 7;, and [),. The problem which presents itself is
to know whether II] < II, strictly or note,

A. Construction of 7},

Let J be the left ideal B,(¥"F -1) of B,, n an integer
>0. Since (Y"F ~1) has no inverse [10], there exists a
maximal left ideal §, which contains §,. Let 77 be the ir-
reducible representation defined on the quotient
V,=B,/J, and ¢ the class of 1.

Lemma 5.1: 77(Y) and #7(F) have no eigenvalue.

Proof: If 77(Y) had an eigenvalue, one would have
#7=m, where 7 belongs to [ or to {r;}U {n;}. This is im-
possible, since 7(Y"F} can have no eigenvalue (#0).

Lemma 5.2: ¢ is not an eigenvector of 77(Y™F),
Osm<n.

Proof: In fact, if one had 77(Y™F) o= u @, then it
would follow that #7(Y"F) o= a(Y"™) n}(Y™F) o= p
(Y™ ™) ¢ = . This result is in contradiction with
Lemma 5. 1.

Theorem 5.1: {m(Y*)¢, m(Y™F)p, ke N, pe N-{0},
O0<sm <n}is a basis of V,.

Proof: By construction V, = 77(B,)¢; thus {r(Y*F")e,
™(Y'G"e, 1, p, kEN, » €N ={0}} is generator.

Since 7}(G") ¢=12(GTY"F) p=mi[(Y +7)" (Y +7» -1)
G*'] ¢, an induction on » shows that {n}( Y*F?) ¢} gener-
ates V,. Finally, for k >#n, one has

YAFP=Y*nF#1(Y +p - 1V'F
or 71 Y*F?) o= ni(Y*"F*") o+ 27, CL(p -1V
[Y* (Y = p+1)"7/F?] ¢, which expresses m(Y*F?) ¢ as
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a linear combination of the #}(¥Y*¥F?) ¢, 1<j<n, and
the a7(Y*"F*')¢. By induction on k, one deduces that
72(Y*F?) @ can be expressed as a combination of the
i Y?) ¢ and the n';( Y™"F") ¢, 0<m<n, and thus that
{m(Y?) @, s{Y"F*) @, ke N, p e N= {0}, 0 <m <n} are
generators.

To show that it is free amounts to proving that if a
linear combination of its elements of the form za, Y*
+Z U, ,Y™F? belongs to the annihilator of ¢, then it is
null.

Let us denote the largest p coming in by p,. If p,=0
the proposition is true by Lemma 5.1. Let us suppose
it is true up to rank p -1, and let us consider a com-
bination of this type with sup p=p,.

B@[Trm ot T, ,mrem o)

_17"[7\7& (Y +1)ema(Y) + E M, (Y + 1) Y)F"]
Thus, by the hypothesis of induction
(Y + 1) (Y)+ 2 p (Y +1)ma(Y)FP=0.
k mopto | ™
From this result one deduces p, ,=0Ym Vp>1. There
then remains {ZT 2, (Y + 1)"”'+Zm L (Y +1)™a(Y)=0.
However, k+nzn>mV k,¥Ym, and B is entire. Thus
By, =2,=0 V¥, ¥ QED

B. Spectral theory in 7}

Let 7% be the representation (z priori not irreducible)

defined on the quotient B,/d =V’, ¢’ the class of 1.

Theorem 5.2: {n}/(Y*) ¢’ , 73" (Y"F?) ¢/ ,k€N, peN
- {0}, 0 < m <n}is a basis of V',

Proof: The first part of the proof of Theorem 5.1 is
applicable word for word (since it does not bring in the
irreducibility of #7), and proves that the set is a system
of generators.

Let us consider 2% (Y*) ¢ + 2, , 1, , 7V (Y™F?)

myp A
¢’ =0. This expression is equivalent to

2N YR+ Z, Hp, Y™ F? €9n, which is not possible un-
lessi =4, f‘_OVk m,p (smceﬂncgn QED
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Corollary 5.1: 7}’ and 77 are equivalent.

Covollary 5.2: The left ideal B,(Y"F —1) is maximal
(gn=2n).

We can now answer the question asked at the beginning
of this section.

Theorem 5.3: For every n>0,
3.

a7 does not belong to

Proof; Since Ann ¢ is monogenic, 77 cannot belong to
O(x}) or O(x;) (Proposition 4. 3). If there existed an
automorphism A of A, such that 77=7' oA, 7’ €/),, then
by Propositions 4.1 and 4.4 there would ex1st complex
numbers v and ¢ #0 such that

Y"F=1+c(A™'Y - ).

However, 1+ C(A™'Y-v) is strictly semi-simple, where-
as Y"F is not (Ref. 10, Lemma 5.2). Thus the hypothe-
sis is contradictory.

Likewise, Y"F not being strictly nilpotent, % €0(n?).
QED
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On nonlinear transformations in vector spaces.
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The sets of special colineations and conformal transformations of a pseudo-orthogonal vector space
can be given only a Lie groupoid structure, rather than a Lie group structure because of the non-
vanishing denominators. With every such groupoid one can associate a unique Lie group, which,
however, no longer consists of transformations. For one-parameter subgroups one can define
infinitesimal transformations and a bilinear composition, called Lie bracket, which reduces for linear
transformations to the commutator. In the special cases of colineations and conformal
transformations on pseudo-orthogonal vector spaces of arbitrary finite dimension and signatures,
covering homomorphisms onto matrix groups are given together with the corresponding Lie algebra

isomorphisms.

I. INTRODUCTION

There have been several applications of nonlinear
transformation groups in physics. Especially the group
of conformal transformations of Minkowski space has
been used in electrodynamics and particle physics for
the description of massless particles. Colineations were
used in physics only once, namely in a three-dimension-
al Euclidean space for the optical mapping by lenses.
Since the colineation group of Minkowski space, which
is shown below to be isomorphic to SI(5, R), contains the
Poincaré group as a subgroup, it may serve as a gen-
eralization of the latter to describe internal symmetry.
However its kinematical interpretation in Minkowski
space seems to be difficult, since it has no such special
geometrical aspects as the Poincaré group and the con-
formal group, except being the most general transfor-
mation group which transforms straight (world) lines
into straight (world) lines. This geometrical property
suggests its application in scattering theory in a way
which parallels its use in geometrical optics. In a scat-
tering process, the S matrix should be invariant under
the full colineation group.

In the following a mathematical description of the full
colineation and conformal groups of arbitrary finite
dimensional pseudo-orthogonal vector spaces over the
real numbers is given. It is shown that sets of rational
transformations like special colineations and special
conformal transformations form a groupoid only, rather

than a group, since there are nonvanishing denominators.

There is a unique group associated with every such
groupoid, which however consists no longer of vector
space transformations. By means of the directional
derivative it is possible to define for every one-param-
eter subgroup a socalled infinitesimal transformation
on the underlying vector space. For the two cases in
question these infinitesimal transformations are poly-
nomial; therefore there is no trouble with their domains
of definition. The set of infinitesimal transformations
can be made a vector space and even a Lie algebra, and
the Lie bracket coincides with the commutator of two
infinitesimal transformations only if they are linear.

For the construction of those Lie algebras, one-
parameter subgroups of some classical matrix groups
are described. The full colineation group of a pseudo-
orthogonal vector space V is shown to be globally iso-
morphic to SI(R®V, R) for all possible signatures of the
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bilinear form on V. The full conformal group is locally
isomorphic (in some special cases, depending on dimen-
sion and signature, even globally isomorphic) to the non-
compact pseudo-orthogonal groups in R® V& R with a
suitable indefinite, nondegenerate, symmetric bilinear
form. Both covering homomorphisms are given explic-
itly. The Lie algebras of infinitesimal transformations
are isomorphic to sI(R® V, R) resp. to the noncompact
pseudo-orthogonal Lie algebras in R® V@ R. The latter
isomorphism establishes a bijection between the con-
formal Lie algebras in V and the noncompact pseudo-
orthogonal Lie algebras in R®V&R.

i1. THE GROUP OF BIRATIONAL
-TRANSFORMATIONS OF A VECTOR SPACE

Given a n-dimensional real vector space V with basis
P, ---,p", a rational (polynomial) transformation T of
V can be written

T(x)= z Q(Ey, -, £ (2.1)

where the coefficients 2, are rational (polynomial) func-
tions of the £,=R, and x=£p' +- .- + £ p". Writing the
©,’s as reduced quotients of polynomials, the least-
common multiple of their denominators is uniquely
determined up to a constant factor and called
denominator of T, den(T). In general T is defined only
on an open subset Dom(T') (in the R" topology of V) of V,
called its domain, given by all x ¢ V for which Den(T)
#0. Two transformations S and T are said to be
composable on Dom(ST) if

Dom(ST)={xc V/xc Dom(T) and Tx c Dom(S)} (2.2)

is not empty, i.e. if Im(T)n Dom(S)# @. A rational
transformation is said to be birational if there is another
rational transformation 7-! such that T and 7! as well
as T"! and T are composable and T =idyp( gy, TT?

=1id;y( ). The composition
(S, Dom(S)) (T, Dom(T))=(ST, Dom(ST)) (2.3)

defines an associative multiplication on the pairs
(T, Dom(T)). Every element (id,, A) with A an open sub-
set of V and id, the identical transformation on A, is an
identity, i.e.,
(T, Dom(T)) (id,, A) = (T, AN Dom(T))
(2.4)

(id,, A) (T, Dom(T))=(T, Dom(T)n Im(T)N A4).

Copyright © 1974 American Institute of Physics 360
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For a birational transformation 7, the domain of the
inverse transformation 7-! is again an open subset
Dom(TYy=Im(T) of V. The inverse of (T, Dom(T)), T
birational, is (T-*, Im(T)) since (T, Dom(T)) (T, Im(T))
=(id, Im(T)) and (T"*, Im(T)) (T, Dom(7))={(id, Dom(T))
are identities. Thus the set of pairs (T, Dom(T)), T
birational, is a groupoid, but not a group (for the de-
finition of groupoids see Ref. 1, p. 112 and Ref. 2). The
relation

(T, Dom(T))~ (S, Dom(S)) iff T =S in Dom(T)n Dom(S)
(2. 5)

is an equivalence relation. Dom(7T)n Dom(S) is a non-
empty open subset of V. The set of equivalence classes
is a group which we call group of birational
transformations of V, Birat(V). It is isomorphic to the
group P(V) defined in Ref. 3, p.3 and Ref. 4, p.354.

IIl. THE LIE ALGEBRA OF INFINITESIMAL
TRANSFORMATIONS OF A LIE SUBGROUP
OF BIRAT(V)

Given two vector spaces V,, V,, a mapping f from
some open subspace P C V, into V, is called
" differentiable in x ¢ @, if there is a linear mapping
of (x)/2x : V,—~ V,, called the divectional devivative of f,
such that for all uc v,

%CT(x)u:IEi_rgl % [f(x +eu)-F(x)].

Given a mapping 6 from R into the set of birational
transformations of V, such that the induced mapping
into Birat(V) is a one-parameter subgroup, we call the
transformation 66, defined by

(66)(x) = lim %';)(x—)

1, xen Dom(6(u)), (3.1)

the infinitesimal transformation of 6. In the special
cases of the colineation and conformal groups, 560 is a
polynomial transformation for all one-parameter sub-
groups (as shown below) and therefore Dom(56)=V.
Given one-parameter subgroups 6, ¢, ... such that
the corresponding infinitesimal transformations are
polynomial, the sum of their infinitesimal transforma-
tions 50, 8¢, ... is defined by

(a56+B86 +-- - )(x)=lim aB(au)g";Bu)- @

(3.2)

The set of (polynomial) transformations generated in
this way by the infinitesimal transformations is a vector
space (Ref. 5, p.114) which is finite dimensional if the
one-parameter subgroups are taken from a Lie subgroup
of Birat(V). Taking all possible one-parameter sub-
groups from this group G, the dimension of this vector
space Lie(G) becomes equal to that of G, since the ex-
ponential mapping of Lie groups defines a bijection be-
tween the one-parameter subgroups and the elements of
the Lie algebra [the latter is defined as the vector space
of left invariant vector fields on G; thus it is different
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from Lie(G)]. The sum of two infinitesimal transforma-
tions defined in (3. 2) coincides with the pointwise sum.
This can be verified easily for the two cases to be
treated below. The Lie bracket of two infinitesimal
transformations 66 and 66 is defined by

{o6,86'} (x)=lim 36(‘/—‘1)9'(‘[‘—*)"éf)'le'(‘[m'l(") 1.

(3.3)

The pair [Lie(G),{,}] is a Lie algebra which is isomor-
phic to the Lie algebra of G (Ref. 5, p.141). In physics
one often uses besides Lie(G) another concept of Lie
algebra given by vector fields on V (usually called
generators) Vo, defined by

(V°A) () =Lim _____af(e;ﬁ)(x)) 1 (3. 4)

for some real-valued function on V (Ref. 6, p.33) (the
Lie algebras defined in mathematics as left invariant
vector fields on G seem to play no role in physics).

The exponential mapping of Lie(G) into G is defined by
Exp : 30+ 6(1). It is known, that it coincides for linear
transformations with the exponential series (Ref. 7,

p. 101). From the Baker—Campbell—Hausdorf formula
(Ref. 7, p.96) follows, that in this case the Lie bracket
coincides with the commutator of two infinitesimal
transformations. This cannot be generalized to non-
linear transformations. The Lie algebra of infinitesimal
transformations can be defined for linear Lie trans-
formation groups G by

Lie(G)={66 c end(V)/exp(td6) c G, £ c R}
together with the commutator (Ref. 3, p.94).

(3.5)

IV. ONE-PARAMETER SUBGROUPS AND
BASIS-FREE COMMUTATION RELATIONS
OF SOME CLASSICAL MATRIX GROUPS

(i) The general linear groups. Given a symmetric
bilinear form 7 on V, and a mapping g(b®a) e gl{(V, R)
defined by

g(bRa)x=71(a,x)b, (4.1)
the linear transformations

G¥N(b®a)=id, + [7(a, b)]* (e - 1)g(b® a),

G*(ba)=id, + pg(baa), (4.2)

for 7(a, b)#0, resp. 7(a,b)=0, define one-parameter
subgroups 8,,: u = G*}(b® a) of GI(V, R) because of

605, =g(b®a), (4.3)
The Lie bracket, which is the commutator, becomes
[g(b® a), gld®c)]=T(a, d)g(b®c) ~ 7(b, c)g(d D a).
(4.4)

If 7 is nondegenerate, in which case we will write {a, b)
with a,be V, g(V® V) generates gi(V, R), i.e., every
element of gI(V, R) is a sum of g(d® a)’s. The adjoint of
g(b & a) with respect to 7 is gla®b). If the matrix I of
(, ) reduces to the identity, g(b ®a) becomes the usual
tensor product of the column of b and the row of a in the

exp[pg(b® a)l=G* (b a).
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chosen basis of V. The adjoint then reduces to the
transposed. From (4. 2) and (4. 3) follows for 7(a, b)+#0

id, + agla® b) = exp[7(a, b)'log[1 + at(a, b)| gla®b)],

(4.5)

if 1+ ar(a,b)>0, and for 7(a,b)=0

id, + agla® b) = explag (a®b)]. (4.6)
Using then that for all n X» matrices A

deteA =exp(Spur A) (4.7)
and Spur g(a® b) = 7(a, b), one proves that

det[id, + a gla®b)]=1+ at(a,b),
for 1+ ar(a, b)=0. For 1+ at(a,b)#0
[id, + cg(d® a)]*=id, — {a/[1+ at(a, b)]} g(d®a). (4.9)

(ii) The pseudo-orthogonal groups. The group of
invertible transformations M of V with (Mx, My)={(x,y)
will be called Aut(V, {,)). For positive-definite {, ) we
write O(V, R). Its Lie algebra of infinitesimal trans-
formations is written der(V, (,)) resp. so(V, R). der(V,
(, ) is the set of all linear transformations R with
(Rx,y)+{x,Ry)=0. The discriminant of a,bc V is

dic(a, b) = (a, b)? - (a, a) (b, b). (4.10)
The linear transformation o(b ® a) of V defined by
o(b® a)x ={a, x)b - (b, x)a (4.11)

is in der(V, (, )). For dic(a, b)#0 resp. dic(a, b)=0,
one-parameter subgroups 6,y (.5 4k~ 0" (b®a) of
Aut(V, {, )) are given by

0'“(b® a)=id,, + dic(a, b)*{cosh[pVdic(a, b)] - 1} o(b ® a)?
+ dic(a, b)"/2 ginhpuVdic(a, b) 0o(b R a),
0¥ Nb®a)=id, + p o{b ®a)+ (12/2!) 0o(b® a)’,

(4.12)
respectively. It is easy to establish the corresponding
relations to (4. 3)

80,4y, =00®a), expluo(b®a)] =0 (b®a).

(4.13)
The commutation relations of der(V, (, )) become
[o(b® a), o(d®c)]={(a,c)o(dRb)+ (b, d) o{c R a)

—{a,d) o(c®b) - (b, c)o(dRa),

which may be deduced from the Clifford algebra as well
(Ref. 8, p.232). For dic(a, b) <0, which because of the
Schwartz inequaliiy is always the case for positive defi-
nite (, ), (4.12) becomes

0™ (b a)=id, + dic(a, b)"*/2 sinpV- dic(a, ) o(b &€ a)
+ dic(a, b)Ycos[p V- dic(a, b) ] - 1}
o(b Ra)?.

(4.14)

(4.15)

For linearly dependent a and b, dic(a,b)=0. A discus-
sion of the use of 0'*’(b® a) in the geometry of SO(2, R),
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S0(3, R) and the Lorentz group is given in (Ref. 9,
Chaps. 6 and 7).

(iii) The symplectic groups. For completeness we
give the one-parameter subgroups of the symplectic
group Sp(E, o) of a symplectic vector space (E,v), the
skew bilinear form ¢ being nondegenerate. Defining

s(b® a)x = ola, x)b + a(b, x)a,
(4. 16)

Hb® a)x =o(a, x)b — ob, x)a,

the linear transformation s(b® a) is in the symplectic
matrix Lie algebra sp(E, o) and

S b®a)=id, + o(a, b)* sinhpo(a, b) s(b @ a)
+ [coshpo(a, b) - 1] H{b® a)
$*(b® a)=id, + us(b @ a),

(4.17)

for o(a,b)+0 resp. o(a,b)=0, defines one-parameter
subgroups 6g, g o : kS (b & a) of Sp(E, 0). Since
every element of sp(E, o) is a sum of s(b R a)’s, the
commutation relations of sp(E, 0) may be summarized
by

[s(bg a), s(d®c)]=0(a, d)s(c ®d) + o(b, d)s(c D a)
(4.18)
+ ola, ¢)s(d®b) + o(b, c)s(d®a),

which may be deduced from the canonical Weyl algebra
as well (Ref. 10, f.120). It is easy to establish the
corresponding relations to (4. 3) and (4. 13).

V. THE COLINEATION GROUP OF A PSEUDO-
ORTHOGONAL VECTOR SPACE

In the following we denote the matrix of {, ) by I. A
special colineation C, is the rational transformation

C (x)=x/(1+(a,x)), axcV. (5.1)
Since (, ) is nondegenerate it is easy to prove

N DomC,={0}, U DomC,=V. (5.2)

*Ey v

Let C(V, (, )) denote the corresponding n-dimensional
group of birational transformations. It is commutative.
Let T(V) denote the group of translations on V, i.e.,
the set of affine transformations

T (x)=x+a, (5.3)

The group generated by T(V), GI(V,R), and C(V, (,))is
called the full colineation group of (V, (, )), which we
write Col(V, (, )). For uc DomC, one verifies

x,ac V.

CuTb:TCu(b)Cu+(u,b)uN(b®u)’ (5.4)
where
Nb®u)=(1+(u, b)) [id, — (1 +(u, b)) g(b @ u)]
(5. 5)
is in GI(V,R) and
N(b@u)'=(1+@,b)) [id, + g(b ®u)] (5.6)

from (4.9). From (5. 4) one verifies for G, G € GI(V, R)
and Gc € Dom C, the multiplication law

(T,C,G)(T C,G)= Tmc,,(cc) Coutv,6omriniceomert T
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N(Gc®b)GG. (5.7)

For Gc¢ DomC, such a relation is not valid. From (5.7)

(T,C,G) ' =T 10 4-0) Cotretarsr D16 T Wiao)Try G N(@a®b)

(5.8)

for ac Dom C,. (5.7) and (5. 8) can be only deduced for
invertible I. It is for that reason, that {, ) was taken
to be nondegenerate.

VI. THE ISOMORPHISM BETWEEN COL (V, <,>)
AND SL (ReV, R)

Given x=t@®xc Ro V, we denote by % the set of all x
such that £+0. Then the mapping

T:x —x/¢, I:B—-V (6.1)

is surjective with the fiber over yc VI y)={xc®/x
=£y}. Trivially I'(x) = I'(y) implies x=(£/n)y. For A

e GI{R® V, R) with Axc @8 then I'(x)= I'(y) implies I'(Ax)
=TI{(¢/n)Ay] and this is equal to I'(Ay) because the two
arguments lie in the same fiber. Thus the group homo-
morphism I': A—~ I'(A), T':SI(R® V, R)— Birat(V), de-
fined by

T'(A) I'(x) = T'(Ax) (6.2)

is well defined. To show that T is surjective onto

Col(V, {(, }) one has to consider the Lie algebra of in-
finitesimal transformations of S{R® V,R), i.e., the
set of square n + 1 matrices with vanishing trace. Every
such matrix can be wriften

5T, + 6C, + 6G
(6.3)
(o 0 (0 le>
'—(a o)+ 0 o
— SpursG/(1+n) 0
0 '8G - [SpurdG/(1+n)]id, |’

with 6G ¢ gl(V, R), ac V identified with its column in the
chosen basis, a” being the corresponding row. From
this we get the one-parameter subgroups

oty (1 0) (6.4)
pa id,/)’
T

euGCb:<(1) #igl), (6.5)
v

e“"“:(dete““c)'”“"((l) eﬁ’m), (6.6)

of SI(Ro@ V, R). They generate SI(R® V, R). If we write
exp(6T,)=:T,, exp(6C,)=:C,, and exp(5G)=:G then it
is easy to prove

nT)=T, I(C,)=C, T(G)=¢G,

which shows that I' is surjective onto Col{V, (, }). It is
easy to verify that the kernel of T is trivial. If we

~ choose on Col(V, {, )) the finest topology such that T" is
continuous then Col(V, ( , )) is isomorphic as a Lie
group to S{R& V, R).

(6.7
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VII. THE LIE ALGEBRA OF INFINITESIMAL
COLINEATIONS '

A complete set of one-parameter subgroups of
Col(V, {, ))is given by u —C,,, (special colineations),
u —~ T,, (translations), and p — G'*’ (b ®a) (general
linear transformations). From (3. 1) follows

8C (x) = - (a, x)x, (7.1)
8T ,(x)=b, (7.2)
8GU(V,R)=gl(V,R), (7.3)

where obviously 87T, is homogeneous of degree zero,
gl(V, R) homogeneous of degree one (linear), and 6C,
homogeneous of degree two.

The Lie brackets of the infinitesimal colineations
Col(V, {, M =col(V, (,)) can be calculated from (3. 3),
(4.2), (4.9), (5.4) and (5.7)

{oc,, 6C,}=1{61,, 6T} =0, (7.4)
{oc,, 8T, }=-b[glb®a)+ (a,b)id,], (7.5)
{6C ,, 8G} =86C 1156y 1> (7.6)
{6T,, 6G} == 0T o, (7.7)

together with the commutation relations (4. 4) for
gl(V,R). The matrices §T,, 6C,, 6G fulfill the same
commutation relations with

~slgtbea+ @nia,)=(4P g(,f@a)). (.

If we introduce a bilinear form on the vector space
sl(R® V,R) by (4, B) =Spur A B, then a verification
shows

sllsC,, 6T.], 6T ] = - (a, x)0T,
=~ (8C,, 6T 6T, =5C,q_(8T,),

8)

(7.9)

[6G, 6T, ]=ad(6G)8T,= 6T, 5,, (7.10)
ad(8T,)°6T, = 6T, =06T5q (5T,). (7.11)

VIll. THE CONFORMAL GROUP OF A PSEUDO
ORTHOGONAL VECTOR SPACE

A special class of linear transformations is given by

S(a®b)=id, - 2{a, b)™ g(a®b), S(a®a)=:S, (8.1)

with S(a®b)*=id,, detS(a®b)=-1 from (4. 8); hence
S(a®b)e GI(V,R). The S,c Aut(V, (, )) are called
reflections. It is known that for positive definite (, )
every element of Aut(V, (, )) which is different from
the identity can be written as a product of at most »
such reflections. By inclusion of the dilatations, defined
by D,x =Xx for 0#xc R, we get the in(n - 1)+ 1 dimen-
sional group DAut(V, {, )) resp. DO(V,R)if (, ) is
positive definite, which has one, two, or four con-
nectivity components depending on the signature of (, )
and the dimension of V. The connectivity of each com-
ponent is simple for the trivial one-dimensional case,
infinite if #, or », in the signature (n,,n,) of {, ) equals
two, and twofold otherwise.

The nonlinear special conformal transformations are
given by
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K, (x)=(x+ (x, x)a)/(1+2{a, x) + {a, a) {x, x)). (8.2)
The denominator will be shortened to w(a, x) in the
following.

R(x)=x/{x, x) (8.3)
is called an inversion. For xc {ye V/y and T R(y)
< Dom R} it is easy to see that (Ref. 11, p.399)

K,=RT,R. (8.4)

A geometrical description of Dom K|, is given in Ref. 12,
p. 1089 for diagonal, pseudo-orthogonal {, ) in two di-
mensions. Let K(V, {, )) denote the corresponding n-
dimensional, commutative subgroup of Birat(V). Then
the group Kon(V, (, )) generated by DAut(V, {, )),

K(V, ¢, )) and the translations in V is called the full
conformal group of (V, {, )). It is straightforeward to
verify for uc DomK,

T =K gy Triato,un-o,50uP 5,0 Sy Su (8.5)
from which one deduces the multiplication law
(KT M) (K T M)
=Ky, wrva T
XS MM,
where M, M e DAut(V, (, )), M= ayM,, Oza,cR,

M,e Aut(V, (, )) and u=(a,)* M,c. The inverse of
K,T,M is

b+2(b,u)b-(b,b)u+Dw(b’u.)SKb(u)SuMllDw(b.u) SKb(u)

(8.6)

K-aMM(',le(a ) T—M'lsKb(a,saz>,‘,(ay,,,xau;>M']L SKb(a)SaDw(a,b)i8 ?
Obviously R & Kon(V, {, )). From

K (%), K (2)y = wla, x)"! {x, x) (8.8)

follows that light cones are preserved by K(V, (, ).
For positive definite ( , ) the angle between two vectors
x and y arc cos{{x, ) (V{x, x) {y,y)!] is not invariant
under special conformal transformations. K, is a solu-
tion of the differential equation

(Ref. 11, p.398), and the same type of differential
equation with suitable factor on the right-hand side is
valid for the other transformations of Kon(V, (, )).

There is an immediate generalization of the results
of this section to the case of a degenerate symmetric
bilinear form 7 with the signature (n,,n,,n,), #, +n,+n,
=n. One can choose a basis of V such that the matrix
of 7 is diag(1,...,1,1,-1,...,-1,0,...,0) with n,
times 1, n, times -1 and n, times 0. If the bilinear
kernel of Tis defined by Bk(7)={xe V/7(x, v)=0 for all
ye V}, then V=V, &V, ®Bk(7) with dimV,=#,, dimV,
=n, and dim Bk(7)=n, Aut(V,7)is a in(n- 1)+ inyln,
+ 1) dimensional group, which in matrix form is

(Aut(vle Voo ly ov) 0 )
M > GUBK(T))’

M being the set of arbitrary rectangular (n,+n,)Xn,
matrices. The only result which has to be changed in the
case of degenerate T is N, Dom K, =BKk(7). Proof:
Trivially Bk(7)c DomK, for all xc V. On the other hand,

(8.10)
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given ye V,®V, with ye DomK,, it is easy to find

be V with y ¢ Dom K ,; namely if 7(y,y)+0 one has y
¢gDomK_ . .,-1, and if 7(y,y)=0 it is always possible
to find b with 1+ 27(y,b)=0, since the restriction of T
to V, @ V, is nondegenerate.

IX. THE HOMOMORPHISM OF CONFORMAL.
AND PSEUDO-ORTHOGONAL GROUPS

Following (Ref. 13, p.16) it is possible to determine
the Lie group data of the full conformal group.

Given ¥=(,0xa f;‘wle ReéVeR=: $7, the » + 2 dimen-
sional vector space V can be equipped with an indefinite
bilinear from ¢, », whose matrix is diag(1,7, - 1). Also
letbe @={Xc V/< %, ¥ +=0and £,,, - £,#0}. The map-
ping

r:%‘ "x/(Em1‘£o)y (9'1)

is surjective with the fiber over ye V I"''(v)={Xc @/
x=(£,,, - £)y}. If x is any element of @, then

0=4 ;C'a ; = (Eml - 50) [(‘Eml - Eo) <r‘(§)’ I‘(EE)} - (£n+l+ Eo)]

implies that §,,, + £,=(§,,, - &) (I(%), [(&)). Hence for
%, Ye@with I(¥) = I'(5)

5,,4.1 + go = [(Eml - Eo)/(nml - no)] (nml - no)’

from which &,,,=(£,,; - £)(,..; - 1)1, The same
relation holds for £;,. Therefore

I(X) =) iff ¥=[(£n, - &)/ Mpr =T, (¥)

Given A ¢ Aut(V, 4, ») with A¥ c®@, I(%)=I(5) implies
that DA %) = T{(£,., - £)(N,., ~ 1) " A ¥], and this is equal
to T'(A 7) because the arguements lie in the same fiber.
Thus the group homomorphism T A — T(A),

T':Aut(V, 4, $)— Birat(V), given by

') I(%) = T(A%) (9.2)

is well defined. To show that I' is a surjective homo-
morphism on the connectivity component of the identity
in the conformal group (this component will be denoted
in the following by an index 0) one has to consider the
Lie algebra of infinitesimal transformations of

Aut(¥, 4, >), which is der(V, <, »). Every element of
der(V, 4, #) has the form

oK, + 6T, + 6M + oD,

Tr:o—V

(9.3)

0 -a71 O 0 b1 O 0o 0 O 0 0 ¥y
:=la O al+f-b 0 b))+ 0 oM O0)+{0 O 0}
0 @™ 0 0 b7 O 0o 0o O y 0 0

where ¥ c R and 6M = der(V,(, )), i.e., in the chosen
basis (6M)T] +16M =0. The corresponding one-param-
eter subgroups are

1-3u¥a,a) -upa™ -3u¥a,a)
exp(uéIN{a)z La id,, wa , (9.4)
+1u¥a, ay pa™l 1+ %iu*a,a
1-3u%b,by pb™  $u*(b,b)
exp(ubT,)=| - ubd id, ub X (9. 5)

—3%b,b)  wbTT 1+3ub,b)
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(Ref. 14, p.856),

1 0 0
exp(ubif)=| 0 exp(uéM) O (9.6)
0 0
coshuyy O sinhuy
exp(poD,) = 0 id, 0 9.7
sinhuy 0 coshpuy

Every element of Auto(?/, 4, ¥) is a product of such
elements. Using the relations of zhe beginning of this
section, it is to prove, for exp(6K,)=:K,, exp(dT,)

=:T,, exp(6M)=:M, and exp(6D,)=:D,,,, that

rK)=K, IT(T)=T, TIU=M, 1(d)=D,.
(9. 8)

Thus I' maps Auto(V, 4, $) onto Kony(V,(, ), if the
latter group is equipped with the finest topology such
that I' is continuous. From (*) it is easy to see that the
kernel of I" consists of all multiples of id; in Auty(V, 4,
¥), i.e., of +idy or idy only, depending whether - id;

e Aut,(V, 4, +) or not. This obviously depends on dimen-
sion and signature of (V, (, )). In case n, and n, are
both odd, it is thus proved

{id,} — {£idy} ~ Auty(V, €, #) = Kony(V, (, ) — {id,}.
(9.9)

This for instance is the case for V being the Minkowski
space. In the other cases Auty(V, 4, +) and Kony(V, { , ))
are isomorphic. So for instance the proper ortho-
chronous Lorentz group is isomorphic to the connectivity
component of the identity of the conformal group of a
two-dimensional Euclidean vector space.

The square n + 2 matrix

-1 0 0
R:=|0 i, ©
0 o0 1

is in Aut(V, 4, +) but not in Aut,(V, €, +). Hence I'(R)
=R shows that R is not in Kony(V, ( , )) and that
Kony(V, (, Y)YJURKony(V, {, )) is a (rn+ 2)(n+ 1) dimen-
sional Lie group of two connectivity components.

X. THE LIE ALGEBRA OF INFINITESIMAL
CONFORMAL TRANSFORMATIONS

A complete set of one-parameter subgroups of
Kony(V, (, ) is given by =~ K, (special conformal),
u T, (translations), p+ D, . (dilatations), and the
pseudo-orthogonal (4.12). From (3. 1) follows

8K (x)=(x,x)a - 2(a,x) x, (10.1)
8T, (x)=b, (10. 2)
6D, n=D,, AcR arbitrary (10.3)
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SAut(V, (, ))=der(V, (, )). (10.4)
6T, is a nonlinear transformation homogeneous of degree
zero, 8D, and der(V, (, %) are homogeneous of degree
one, and 8K, is homogeneous of degree two. One
verifies the differential equation

<aa§;(x)u’ v> N <u E’%(ﬂ U> = - 4(x, a)(u, v) (10.5)

and the same type of equation with different factor on the
right-hand side, is valid for the other infinitesimal
conformal transformations. From

(8K (%), OK (%)) =(a, a) (x, x)° (10.6)
follows, that 6K, preserves light cones (as the infini-
tesimal colineations do as well).

Lie brackets of 6 Kon(V, {, ))=kon(V, {, )) can be
calculated from (3. 3), (8.5), and (8.6). An easy but
tedious calculation gives for 6M c der(V, {, )),

{6K,, 0K ,}={3T,, 6T,}=1{D,, D, }={6M,D,}=0, (10.7)
{6K,, 6T, }=20(a®b) - 2D, ,,, (10.8)
{6K,, D,}=0K,,, (10.9)
{6K,, 6M} =~ 8K s, (10. 10)
{67,,D,}=-0T,, (10.11)
{6T,, 6M}=—= 08Ty . (10.12)

and the commutation relations (4. 14) of der(V, (, }).
The matrices 6K,, 67,, 6, and 6D have the same
commutation relations. Thus the class of conformal
Lie algebras of a (not necessarily pseudo-) orthogonal
vector space is isomorphic to the class of (proper)
pseudo-orthogonal Lie algebras in a vector space with
two additional dimensions.

If der(l7, 4, %) is equipped with a bilinear form 4, B)
:=%Spur A B, then
%[[GIN{,,, 55‘,], 65‘1]= (x, 8T, - 2(a, x)6T,
= (6K, 6T ) 6T, - 2(8K,, 8T,) 6T,

=K,z (6T)), (10.13)
(60, 6T ]=ad(6M) 6T = 6T ; 1, (10.14)
ad(6T,)°6T = 6T ,= 6T, 5 (6T)). (10. 15)

It is clear that the decompositions (6. 3) and (9. 3) are
symmetric in the sense of M. Koecher (Ref. 7, Chap.II,
Sec. 5) with the corresponding ~ 1 graduation P, ® P,

® P, (Ref. 7, p.5). Equations (7.9), (7.10) (7.11) and
(10.13). (10.14) (10.15) give the relation to the under-
lying binary Lie algebras col(V, (, )) and kon(V, (, )).
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Faddeev-like equations with multibody forces
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Equations for a system of four particles interacting through two-, three-, and four-body potentials
are derived using a generalization of Faddeev’s technique for the three-body problem. Two
alternative approaches are condsidered and simple equations for iterative solutions are written down.
The method is generalized to the N-body problem with multibody forces.

. INTRODUCTION

The N-body problem in potential theory cannot be
solved by the Lippmann—Schwinger (L—S) equation®
whenever the interactions are k-particle potentials,
with 2 <N. The reason is quite clear: the kernel of the
L~S equation is VG,(E), where Gy(E) is the resolvent,
or Green function, of the free Hamiltonian, and if V is
a sum of k-body potentials there will be N-k spectator
particles in each term, each one of them giving a delta
function when taking matrix elements. Therefore the
kernel is unbounded and the corresponding L—S integral
equation is singular. This difficulty is still present even
if we add to V an N-body interaction.

The simplest of this kind of problem is the three-body
system with two-body interactions, solved by Faddeev
ten years ago. ¢ The method proposed by Faddeev con-
sists in rearranging the Born series for the T-matrix,
in effect splitting it into a sum of three separate
pieces, each being the sum of a specific subset of
terms. He was then able to obtain a system of coupled
integral equations with connected kernel for these three
parts of the 7 matrix. Mathematically, this means that
he first solved the singular parts of the equation in
closed form, recasting the L —S equation into a connect-
ed form. The inhomogeneous term and the kernel of the
Faddeev equations depend upon the off-energy-shell
two-body amplitudes, a property which has been used
to propose a practical theory for calculation in three-
body systems.?® This method can be extended to more
complicated problems, as has been done, for instance,
for the four-body problem with two-body forces.*

It is worth mentioning that Faddeev’s equations are by
no means the only solution which has been proposed for
the three-body problem. The interested reader should
consult the Brandeis lectures by Amado® to find a clear
analysis of Faddeev’s solution as well as its comparison
with several other works on the problem. We refer also
to Hepp’s lectures® for a rigorous proof of the existence
of at least one set of Faddeev-like equations for every
N-particle system.

Here we want to go even further with Faddeev’s meth-
od and treat the four-body system with multibody inter-
actions: that is, two-, three-, and four-body potentials.

The consideration of interactions more complicated
than the two-body potential has usually been ignored
since their effects, if any, would be small as compared
with the effects of two-body forces. On top of this
clearly lie the great complexities which arise when
handling multibody forces in specific calculations of
their effects. On the other hand, a formal solution of the
N-body problem with multibody forces can easily be ob-
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tained: We will show it explicitly for the four-body sys-
tem, and then give a brief outline of the case of N
particles.

The scattering problem for a system interacting
through the sum of two or more potentials can always be
expressed in different ways corresponding to the possi-
ble forms in which the Born series for the 7 matrix
can be rearranged. To select one expression for the
final equations depends, in general, on what interac-
tions are considered as small perturbations compared
with the rest. We present two alternatives for our prob-
lem and give two different sets of equations to solve the
four-body system with two-, three-, and four-body
forces. In the first case, developed in Sec. 3A, the
two- and three-body force effects are all summed up in
every possible three-body subsystem; that is, the
“mixed” three-body system is solved first, and the
four-body equations depend on both that solution and the
four-body potential. Then in Sec. 3B we present the
alternative solution which corresponds to first solving
“pure” four-body problems (that is, with only one kind
of interaction) and writing two uncoupled integral equa-
tions for the interference effects between the two- and
three-body forces. Again, the four-body potential ap-
pears explicitly in the final equation. An iterative solu-
tion of these equations can bring an approximate estima-
tion of the multibody force effects. A possible generali-
zation of this second alternative is outlined in Sec. 4.

To avoid unnecessary repetitions we preferred to
quote some formulas and identities needed in Sec. 2 as
well as the well-known Faddeev equations for the three-
body problem with two- and three-body forces. Finally,
Sec. 5 contains some discussions and our conclusions.

Il. THE THREE-BODY EQUATIONS AND SOME
FORMULAS

As stated in the introduction, in this section we re-
cast some known results for the two- and three-body
problem. To save time, we quote them directly as ex-
pressed in the four-body Hilbert space.

We begin by defining the total four-body Hamiltonian.
It is given by
H=H,+V+W+Z=H,+U, (2.1)

where H,, the free Hamiltonian, is merely the kinetic
energy term

4 2
H,= Z; L

“om, (2.2)
and U is the potential term built up of three parts:
V:E(Vrs, r,s=1,2,3,4 (2.3)
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is the total two-body potential, V _being the interaction
between particles » and s;

W=P<§<}r pr’ (2.4)

is the total three-body interaction term, V, being the
three-body potential acting on particles p, ¢, and »
simultaneously. Finally, Z represents a possible four-
body potential, included here mainly to render our
treatment complete.

b, q,r=1’2y374

We define the resolvents, or Green’s functions™

G(s)=(s -H)?, (2.5a)
Go(s)=(s =Hy)?, (2.5v)
G, (s)=(s —H, -V, )™, (2.5c¢)
Gipuls)=(s =Ho=V;, = V)%, (2.5d)
GaAs)=(s~Hy=V,; =V, = V,)*, (2.5¢€)
GEMs)=(s =Hy -V, )7, (2. 5f)
G”k(s)z(s _HO_Vij_Vik_ij—Vijk)-l’ (2. 5¢)
G, (s)=(s -Hy-v)", (2. 5h)

where, in the last formula, v stands for either V, W,
or Z or any combination of them. There are many
resolvent identities among these Green’s functions and
we quote only those which will prove useful later:

G(S)=G, () + G (SNV,, + V,, +V,, + V, +V, + W

+Z]-G(s), (2.6a)
G(s)=Gij,kt(s) +Gij,kt(s)[Vik+ ViVt Vy+ W

+Z1-G(s), (2.6b)
G(S) =G, () + G, ((NV, +V, + V, + V, +V, + TV,

+V, +Z]-G(s), (2. 6c)

G(s)=GBUS) +GEUNV +V,,, +V,,, +V,,, + Z]- G(s),

ijk

(2. 6d)

G; p() =Go(8) + o)V, ; + V;, + V,, + V, .1+ G, . (s),
(2. 6e)
Gy pil8)=Gols) + GolNT,, + %), (), (2.60)
G(s) =G (s) + G (s)U - v]G(s), (2.6g)

where in (2. 6g) v has the same meaning as in Eq. (2.5h).

We now proceed to enumerate several results of two-
and three-body systems but recasting them in the four-
body Hilbert space. The two-body T matrix for scatter-
ing of particles 7 and j is defined by

t )=V, + V. G(s)V, . 2.7
It satisfies the L —S equation

t; () =V,; +V, Go(s)t, (s). (2.8)
Furthermore

t; {s)Go(s) =V, ,G(s). (2.9)

Its matrix elements are given in terms of the two-body
T matrix in two-particle Hilbert space, ¢, by

1
(P;P s Pos Py | :(8) | P} D}, DL P
=5%(p, -py) X5 (p, —p})
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x®,,p,|, [s - (p2/2m,) - (p2/2m)]|p;, pp.  (2.10)
In a similar manner we can write in this four-particle
space the Faddeev equations? for scattering of particles
i, 7, and k, i.e.,
2T (s) =1, (s) + t,.j(s)Go(s)[zT’ik(s) + 2T§k(s)].
Note that the total three-body T-matrix is given by
2THs) = 2 *T% (s),

n
m<n m

(2.11)

(2.12)

its matrix elements being functions of three-body space
T-matrix, T

(P;sP ;s Py Py| 2THS)| P}y Py DL DY
= 6(3)(p1 _p;)<p“pp P, | T[S - (p?/zmz)]lp;: P}, py';>-
(2.13)

In the preceding equations the superscript ! refers to
the spectator particle, while the superscript 2 means
that two-body forces only are being taken into account.
Of course, by definition

2TL(s) =V, + V, GV, + V,, +V,, ]

iGin (2.14)
The three-body system, with three-body forces only,
can be solved directly by the corresponding L.—S equa-
tion because in this case the equation is connected.
That is, by definition
3TUS)=V, 5 + V, 4G EUS)V, oy

i ik iR i

(2. 15)

where the notation is obvious. 3T!(s) satisfies the L.—S
equation

STYs) =V, +V, ,Gols)Ts).

ijk ijk

(2.16)

The three-body problem with “mixed” forces, i.e.,
with two- and three-body potentials, can be solved in
complete analogy to (2.11). To that end one defines

TI(S)=V,,+ V, G, )NV, +V,,+V,, + V], (2.17a)
T (8)=V, 5+ VipG o)V, + V + Vi + V1 (2.170)

and, following the same procedure that yields (2.11)
from (2. 14), one gets the following system of connected
equations:

T (s)=t,,(8) +1;,()Go(s) T (s) + T (s) + T 1 (s)],

(2.18a)
T} () =V, 4V, yGo( T (8) + Tl (s) + Thls) + Tt ()]
(2.18Db)
The total three-body T matrix is given by
TH(s) =T} ,(s) + @ T! (s). (2.19)
m<n

In Sec. 4 we will express this solution in another way.

Now, besides the two- and three-body equations
needed for the four-body problem, if one wants connect-
ed equations, there is another problem to be solved
first. This corresponds to the T matrix for particles
(i,7) and (&, I) when only these pairs interact indepen-
dently of each other; in other words, the four-body T
matrix when only the potentials V;; and V,, are acting.
This is defined by

Xij,kl(s) = (Vij +V) + (Vij + Vkl)Gij,kl(s)(Vij + V)
(2.20)
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It can be shown® % that, making the decomposition

X, 0(s) =X, (s)+X,(s) (2.21)
with

X, (8) =V, +V, Gy OV, + V), 2.22)
it is possible to get as solution for Eq. (2.20):

X, (s)=t, (s) +1,(8)Go(s)X,,(s) (2.23)

[and a similar equation for X, (s)] entirely in terms of
t; (s) and t,,(s).

This completes the preliminary results that we shall
need in the following sections. We emphasize that all
the foregoing equations are already cast in the four-
body Hilbert space, so that the relationships of the
matrix elements of the T-matrix to those defined in the
two- and three-body spaces are given by expressions
similar to those in Egs. (2.10) and (2. 13).

Ifl. THE FOUR-BODY PROBLEM

A. Four-body equations with two-, three-,
and four-body forces

In this section we solve the general four-body prob-
lem, that is, with two-, three-, and four-body poten-
tials, according to Faddeev’s general procedure. That
is to say, we set up connected equations for the T
matrix in such a way that the input in these equations is
given by the off -energy-shell two- and three-body T
matrices, the equations for which we have already dis-
cussed in the preceding section.

We begin by defining the four-body T matrix by

7(s)Y=U+UG(s)U, (3.1)

where U and G(s) are given in Eqs. (2.1) and (2.5a),
respectively. This satisfies the L.—S equation

7(s) = U+ UG(s)7(s). (3.2)
Furthermore, it is possible to show that
T(s)Go(s)=UG(s). (3.3)

In order to obtain connected equations which would
replace (3.2), we split the T matrix into 11 pieces:

()= Limils)+ 20 7ip(s) +74(s), (3.4)
with - o

T,{8)=V,,+V,G(s)U, (3. 5a)

Tw(8) =V +V, ,G(s)U, (3. 5b)

T,(s)=Z + ZG(s)U. (3.5¢)

Our aim is to write coupled integral equations for the
Ti/S, T, 8, and 7;’s. To this end we proceed as
follows.

Introducing the identity (2.6a) in (3.5a), we obtain

T A8) =V, +V, G, ()W, +V, G, )V, +V, +V, ]
VGV, +V, + V14V, G, ()Y,
VG (Vi + Vi 1+ V6 9V, + 7,

+V,+V, +V, + W+ ZIG(s)U. (3.6)

replacing now the G(s) of the last term by the resolvent
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identity (2. 6b), the total G(s) reappears, and now it has
to be replaced by (2. 6¢) with indices (ijk). Finally G(s)
is again replaced by (2. 6c) but now with indices (jl).
After this is done, we can regroup the terms keeping in
mind the definition (2.7) and using the identity (2.9). In
this way we get from (3. 6):

7,(8)=1t,,(s)
+1, (8)Go() [V, + Vo + V, , 1+ G )V, + V,

+ Vi + Vil + 1, (Go()V, +V,, + V]
X{1+G,, ()V,,+V, +V,, +V,,I}
+1,()Go($)V, {1 + G, (Y, + V,, I}
+1, ($)Go(s K[V, + Vi G()UL + [V, + V,,,G(s)U]
+[(Z +ZG(s)UTL + 1, (S)Go(S)V,, + V, + V, 1G4 (s)
X{V,, + V,,G(s)U + V,, +V,,G(s)U +V,, + V, ,G(s)U

Vi Vi yGU + Vo + V,, G(S)U + Vo + V G(s)U
+Z +ZG(s)U + ¢, ()Go(s)V,, + V,, + V, ,IG, ;. (s)
X{V,, + V,G(s)U + V,, + V,G(s)U +V,, + V,,G(s)U

Vi VG +Vyy +V,, GS)U + TV,

+V ,GSYU +Z + ZG(s)UL + ¢, {8)Go()V,,,G,; ., (s)
X{V,, + V,G(S)U + V,, + V,G(s)U +V,, + V,,G(s)U
+V, +V,,G(s)U+ W+ WG(s)U

+Z +ZG(s)U}. 3.7

To simplify this equation we use several definitions
and identities. First, the sum inside the curly brackets
of the last four terms can be replaced by the corre-
sponding operators 7,,, 7,.,, and 7,, defined in (3. 5a)—
(3.5¢), respectively. The factor multiplying these curly
brackets should be compared with the second, third,
and fourth inhomogeneous terms because they can all be
simultaneously transformed. Let us consider, for in-
stance, the second term. Using the identity (2. 6e) to
transform the curly bracket into G, ,,(s)G5'(s), we can
write the said term in the form

£, ()G () Vi + Vi + V3]G, ()63 (s)

[note that with the exception of G;}(s), this is the same
factor which appears as kernel in the sixth term]. But
using Egs. (2.17a), (2.17b) and (2.18a), (2.18b), we
find that this term is equal to

TH(s) =T}, =t

that is, the connected part of the ij component of the
three-body T matrix for the mixed problem with parti-
cles ijk involved [recalling the observation made above,
the corresponding kernel will be T%(s)G,(s)]. The same
analysis can be made with the fourth inhomogeneous
term and we find it to be equal to X"E].(s)zX”(s) -1,
[the kernel being X5 (s)G,(s)]; therefore, Eq. (3.7) can
finally be recast in the form

7, (8) =1, (s) + T}%(s) + T%(s) + X5 (s)
+ tii(s)GU(s)[Tikl(s) + 7 4,(8) + T,(5)]
+ TH(S)Go(s)T;,(8) +7,,(8) + 7, (s) + 7, (s)

+ Tikl(s) + Tjkz(s) + Tz(s)]
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+ T2(s)Go(S)T,,(s) + 7,,(s) + 7, () + 7, ,(s)

+ T 1q(8) + 7 1 (8) + 75(s))

+X5 (8)Go() T, (8) + Ty (8) +7,,(8) + 7, () + 7, (s)
+T,,(8) + T4 (8) + T 4y(8) + 75(s)]. (3.8a)

To get the equation for 7,,,, we start from (3. 5b).
Using the identity (2. 6d), one obtains

Ti.ik(s) =Vip+ VijkG?;?)e(s)Vijk + Vijkcg';e(s)[v Vit Vi
+Vim +Z]+ V,.”GS;(S)[V Vit Vi + Vi
+Z)G(s)U.

By now (2. 15) and the definitions (3.5a), (3.5b), (3.5¢),
the preceding equation gives

7, #(8) =T (s) +2TH(s)G(s) (3. 8b)

X sz Tim(S) +75(8) + 71 () + 7 4, (8) +7,(s) .

Finally the equation for 7,(s) is, from (3. 5c) and (3. 3),
T,(sY=2Z + ZG,(s)7(s). (3.8¢c)

The set (3. 8) is the solution to our problem. It has
connected kernels, as can be seen by iterating the equa-
tions, and it can be verified that the inhomogeneous
terms contain the sum of all the disconnected parts of
the original L.—S equation. Furthermore, they contain
as special cases the “pure” four-body problems, i.e.,
the problems with n-body potentials only (z <4). For
example, if =2, then W=2=0, 7,(s)=7,(s)=0 [for
all (ij%)] and (3. 8a) reduces to already known expres-
sions given by several authors.** [In this case TS be-
comes ?T}S, etc., as canbe seen from (2.17). ] n=3,
V=2Z=0and 7,(s)=7,(s)=0. [for all (ij)] and there re-
mains only the set (3.8b). Finally, if V=W=0, the
equations reduce to (3.8c), which is very easy to solve
by standard methods.

Note, however, that in order to get connected and
simple equations, it has been necessary to express them
as functions of three-body “mixed” problems [in (3.8a)
T!(s) appears, and by (2.17) it depends on both V and
W|. This, of course, can be a drawback if, having al-
ready solved the four-body system with pairwise inter-
actions, one wants to estimate corrections arising from
three-body forces. It is desirable then to have an alter-
native approach such that the corrections can be esti-
mated divectly at the four -body-system level. We now
turn to such an approach.

B. Alternative solution

The set of Eqs. (3. 8) are the appropriate four -body
equations when the mixed three-body problem has al-
ready been solved. As an alternative procedure, we can
first solve the four-body problem with two-body poten-
tial only, then the pure four-body problem with three-
body forces and, finally, compute the interference of
the two kinds of force in terms of the solutions to the
pure cases. In this way we shall have a more suitable
scheme for an approximate evaluation of multibody
force effects.

As before, we define the total T matrix 7 by

(S)=(V+W+2Z)+(V+ W+ Z2)G(sHV+W+2Z), (3.9)
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but now we decompose T as

T(s) =Ty (s) + T, (s) + 7,(s), (3.10)
where

To(S)=V+VG(s(V+W+2), (3.11)

Tp(s) =W+ WG(s}(V + W+ 2), (3.12)

TS =Z +ZG(s}(V+ W + 2), (3.13)

correspond to (3.4), (3.5a)—(3.5c), respectively. Since
the four-body potential Z does not produce any discon-
nectedness because there are no spectator particles left
with respect to it, we first solve the problem with
potentials V and W, and then superimpose the four-
body -interaction effects.

Putting Z =0 in the previous equations, we have

T(s) =Ty (s) +Tyls), (3. 14a)
where

Ty(S) =V +VG(s)(V + W), (3. 14b)

Tyls) =W+ WG(s)(V + W) (3. 14c)

(the bar over 7 and G indicates that the four-body poten-
tial has been removed).

Using the resolvent identities (2.6g) for U=V + W and
v=V in (3. 14b), and then for v=W in (3. 14c), we have
To(s) =(V + VG [s)V) + VG ()W + WG(s)(V + W],

T (S) = (W + WG (s)W) + WG, (s)[V + VG(s)(V + W)],
where G (s) and G,(s) are defined as in (2. 5g).

The total four-body T matrix with two-body poten-
tials V is precisely®

T,(s)=V + VG, (s)V, (3. 15a)

and the four-body T matrix with three-body potentials
W is®

Tyo(s) =W+ WG, (s)W. (3. 15b)

Therefore, putting (3.15a), (3.15Db) into the two previous
equations, using the usual identity vG (s)=T,(s)G,(s)
and recalling the definitions (3. 14b), (3. 14c) for 7, and
Ty, we finally obtain

T(8) =T () + T (s)Go(s)Tyls), (3.16a)
To(8) =Ty (s) + T (S)Go(s)T, (s). (3. 16b)

The input of these equations is given by T, and T,
which are the solutions of the four-body problem with
only one kind of interaction. Iterating Eqs. (3. 16a),
(3. 16b) we obtain

Ty(s) = Tv(s)[]. +Go(S)T W (s)] + [Tv(s)Go(s)TW(s)Go(s)]

x7,(s), (3.16c)
T (s) = Ty ()1 + Go($) Ty () |+ [T ()G () T (s)Gyls) |
XT(s). (3.16d)

We see that in order to compute the effects of the
interference of both kinds of potentials we must, in
principle, solve a pair of uncoupled integral equations.
However, the three-body-force effects can be approxi-
mately estimated, since the kernels of Egs. (3. 16¢),
(3. 16d) are still connected if we replace T, by its Born
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term W. Moreover, when an accurate evaluation of the
effects due to W is desired, Egs. (38.16¢), (3.16d) can
be the starting point for an iterative solution.

To complete our discussion, we superimpose the
four-body force Z. This is easily done if we recall that
under the action of Z the pieces T, and 7, will acquire
an extra contribution, A7, due to the interference of
(V+ W) and Z, that is,

(3.17a)
(3.17b)

Tv(s) :?V(S) + ATv(s),
Tw(s) :?W(S) + ATW(S)’

and T,, T, are defined by (3. 11) and (3. 12), respective-
ly. From these equations, using the resolvent identities
(2.6g)for U=V+W-+Z and v=V in (3.11), and v=W
in (3.12), we obtain

Tv(s) = Tv(s) + TV(S)GO(S)TW(S) + Tv(s)Go(s)Tz(s)7
To(8) = Tols) + To(s)Gy(s) Ty {s) + To{s)Gy(s)T,(s),

where (3.13), (3.15a), and (3. 15b) as well as the usual
identity vG (s) = T, (s)G,(s) have been used. Subtracting
the set (3.16a), (3.16b) from the previous equations,
we obtain

AT (s) =T (s)Go(s)T,(8) + Ty (s)Go(s)ATy(s),

AT(8) = Tp(s)Go(s) 75 (s) + T {s)Gy(s)AT,(s),
whose solutions are

AT, (8) =T, (s)Gy(s)T,(s),

ATL(s) =T (s)Go(s)T,(s),

because, replacing them in the above equations, we get
(3. 16a) and (3. 16b). Substituting this in Eqs. (3.17a)
and (3. 17b) we obtain

7,(8) =T, (s)1 +Gys)7,(s)],
7(8) =T ()1 +Gy(s)T,(s)].

Therefore, the total four-body T matrix 7, given in
(3.10), is

7(s) =7(s) +[1+T(s)G,(s)12[1 + G(s)7(s) |, (3.18)

where the definitions (3. 13), together with G(s)}(V + W
+ZY = G,(s)7(s), and definition (3. 14a) have been used.

Again, Eq. (3.18) is suitable for estimating the ef-
fects of the four-body potential by an iterative
procedure.

IV. GENERALIZATION FOR N-BODY SYSTEMS

The method used in Sec. 3B can be easily generalized
for more complicated problems. We outline below such
a generalization for the N-body system interacting
through two-, three-,..., up to N-body forces. Al-
though it can be argued that this is merely an academic
problem, it is quoted here for the sake for
completeness.

If V, is the k-body potential, which is the sum of N!/
[£1(N - k)!] terms, the N-body T matrix for V, is de-
fined by

t(s)=V,+V,G(s)V,

where G,(s)=[s - H,—V,]. Later on we shall make
some comments about the complexities which arise

(4.1)
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when one tries to sum the disconnected parts of Eq.
(4.1).

The N-body T matrix for the sum of two-, three-, ...,
A-body potentials will be denoted by 7*)(s). Our aim is
to get a relation between 7™ and 7% for A< N in such

a way that, given 7®V and #,, one is able to compute
pRivy

The case xA=N is considered separately since an
equation with a connected kernel can be written using
Vy only.

By definition

TO(s) = :2“,2 v+ g% v, G“’(s)(i) V,,) (4.2)

k=2
and satisfies the L.—S equation

T®(s)= kZ): Ve + kE: V,Gols)T™(s).
In Eqs. (4.2) and (4. 3)

(4.3)
LY -1
G™M(s)= [s -H,- kZ)ﬂ Vk]
and
Guls) =[s ~H}%,  Hy= 25 p2/2m,)

are the usual resolvents for the total and free Hamilton-
ians, respectively. Defining

TONS)=V,+V,G ‘”(s)(éz Vl), (4.4)
we see that
TM(s)= i) TO(s). (4.5)

k=2

Using now the identity

G N (s)=G,(s) +G,(s) [g)z Vm] GO(s)

in Eq. (4.4), we have
TOs) = (V, + V,G(s)V,)

+ V"Gk(S)[?% v, +<§ V,)Gm(s) (1232 V,)] :

Using definitions (4.1) and (4. 4), together with the I.—S
equation for ¢,(s) in the form V,G,(s) =1,(s)G,(s), the
last equation reduces to

A
TO(s) = £,(5) + £,(5)Gols) [,EZ f;»(s)], £=2,3,.. ..
1
(4.6)
Now, in order to relate 7™ to 7™’ we write

TV =70V AT (4.7a)

where A7, corresponds to the modification of each T*™*}
due to the presence of the added A-body potential.
Therefore, using Eq. (4.6) for A and A -1, and sub-
stracting them, we obtain

AT, =1,(s)Go(s)TM(5) + 1,(s)G,(s) i AT, ).
2

(4."m)
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Comparison of Eq. (4.7b) and Eq. (4.6) for (A -1) sug-
gests the ansatz
AT, =TV (s)G,(s)TM(s), (4.7¢)

and it is easily verified that (4.7c) is a solution of Eq.
(4.™), because when A7,, as given above, is replaced
in Eq. (4.7b) we get Eq. (4.6) for A —1. Therefore,
replacing (4.7c) in (4.7a) we obtain

TI(S) =72 V()1 +Gy(s)M(s)], R=2,3,...,x -1,
(4.8)

which can be summed from k=2 to k=X -1, giving

V()= 1(s) + T D)1 + Gy (s)TM(s)]. (4.9)
Of course, from (4.6),
TM($) = 1,(8) + £,()Go(s)[TV(s) = TM(s) . (4.10)

Inserting Eq. (4.10) into (4.9), we obtain
TM(s)= 'r("'“(s)[l + T""l’(s)Go(s)]tl(s)
X[14G,(s)T™(s) = Go(s)TM(s)].

But at this stage we can introduce the definition (4. 4) of
™ in terms of V,, because, as is easily verified, the
kernel of the resulting equation is connected, since any
delta function coming from V, is absorbed by ¢,(s).
Therefore the final expression is

W) =TO V() +[1 + 70 V(5)G,(s) £, (s)1 = Gols)V, ]
+[1+70()G () ]1,(s)[1 = Go(s) W, ]
XGo(s)T™M(s). (4.11)

Finally, the equation for 7% (s) is easily obtained
from (4.9). Then, if we put A =N and use the definition
4.4) tor 7, we obtain

TIAS) =7 (8) + [1 4 TN D()Go()]Vy[1 + Gyl s) T M (s)].
(4.12)

Equation (4.11), and its corresponding recurrence
throughout the whole problem, requires knowledge of
the solution of what we call “pure problems”, that is,
t,(s). We have already quoted the corresponding con-
nected equations for £,(s) in the case N=4, k=2 and
k=3. The general case is no more difficult than the
four-body problem with two-body forces only. The
method should, by now, be quite clear: the #,(s) matrix
is split into N! /%! (N —k)!] terms, that is, into as
many terms as are contained in the potential. Each
term satisfies an equation similar to (3.5a) or (8.5b).
In order to get connected equations one writes down
resolvent identities in such number that, by applying
them consecutively, one should be able to group terms
that correspond to three different kinds of process:

(a) First of all, there will be terms that reproduce
the T matrix for k-body interacting via a k-body poten-
tial, while the remaining N-% particles are free. [In
our four-body problem, this corresponds to ¢, j(s). ]

(b) There will be terms that, grouped together, will
be identifiable as solutions for the T matrix for (N - 1)-
body systems with k-body forces only. (In our example,
they are terms like T, etc.)

(c) Finally, there will appear terms that represent
the scattering of k particles interacting independently
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of the remaining (N - %) particles which, in turn, inter-
act among themselves. [This corresponds to the Xe,
term in (3.8a). ] If N — k= 2k, this process can be ap-
plied once more to get two groups, both of % particles,
interacting independently of each other and of the rest of
the N -2k particles. In this manner it is ensured that
each piece of the total T-matrix for the pure problem
[£,(s)] will not be coupled to itself and that when the
equations are iterated the kernels are connected, i.e.,
there are no spectator particles left in them.

V.CONCLUSIONS

We have demonstrated that the method proposed by
Faddeev for the three-body problem can be applied to
more complicated systems. This has already been
shown to be the case for the four-body problem with
pairwise interactions. %5

The introduction of multiparticle interactions does
not present essential difficulties, as we have shown in
this article, and equations with connected kernels are
derived for the four-body problem with two-, three-,
and four-body interactions. These equations depend on
the off -energy-shell T-matrices for the two -body prob-
lem and for the mixed (i.e., with two- and three-body
forces) three-body problem as well as on the four-body
potential. However, as indicated in Sec. 3B the three-
body force effects can be taken into account at the three-
body system level by an equation equivalent to (3. 18) so
that, instead of depending on the mixed three-body T
matrix, the equations effectively depend on the off-en-
ergy-shell three-body T matrix with two-body forces
only and also on the three-body potential.

Of course, as pointed out before, to attack the prob-
lem in this way one must first solve the mixed three-
body problem, the effects of three-body forces being
reflected in the four-body system through the three-
body T-matrices used as input.

We have also treated the problem from another point
of view, guided by the idea that in some cases it would
be more interesting to have equations to incorporate
multibody -force effects directly at the four-body-system
level. In this way we get two uncoupled integral equa-
tions for the T-matrix. These equations depend on the
solution of two four-body “pure” problem, that is, with
only two- or three-body forces. The equations account
for the interference effects between the two potentials,
and can be used to obtain an approximate solution by
iterating the equation. Moreover, in such equations
either the two- or the three-body force T matrix can
be replaced by its corresponding Born approximaticn,
because in this case the kernel is still connected. The
inclusion of the four-body potential is always accom-~
plished by the use of an equation like (3. 18), which is
also suitable for an iterative solution.

Without emphasizing its intrinsic interest and merely
for reasons of completeness, we generalized the last
described approach to the N-body problem with two-,
three-,..., up to N-body forces. The procedure is to
use the “pure” T-matrices (say the T matrix with k-
body forces only) and relate the mixed T-matrix which
contains effects of multi-body forces up to (N —1)-body
potential with the mixed 7 matrix that contains multi-



373 M.A. Gregorio and D.R. Avalos: Faddeev-like equations with multibody forces 373

body -force effects up to (N - 2)-body potential. These
equations contain the pure T matrices and the (N - 1)-
body potentials. They are again well suited for the
search of iterative solutions. The N-body potential is
incorporated through Eq. (4.12).

Our equations give an immediate idea of the complexi-
ties which are encountered when calculating multibody -
force effects, due to the large number of coupled multi-
dimensional integral equations which have to be solved.
But we think that the solution proposed in Sec. 3B is
quite simple if approximate evaluations are to be made.
It could be that such equations are useful in evaluations
of binding energy in nuclear matter® when multibody -
force effects are introduced in four-body clusters.
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The geometry of space is probed by using a quantum mechanical wavefunction, which allows the
introduction of the ordinary curvature tensor, and also provides room for a vector which is identified
with the electromagnetic vector potential. The coordinates of space are taken as complex. Thus the
electromagnetic field is geometrized and its presence is found to affect the gravitational field

equations.

. INTRODUCTION

That attempts to develop a unified field theory geome-
trizing both gravitiation and electromagnetism can suc-
ceed is rather unlikely, as there is no clear indication
of an experimental need for such a theory nor any ex-
perimental results that have to be explained. Indeed, the
very concept of success in this field is rather undefined.

Nevertheless model unified field theories are of some
use in developing our understanding of the concepts in-
volved and of the theory of gravitiation upon which they
seek to build. It is for this reason that we present here
such a model.

The present study seeks to see what understanding
can be gained from a theory that is based on quantum
mechanics. In order to probe the properties of space it
is customary to introduce a vector (say the spin of a
particle) and study how its direction changes under
translations. Here the vector that we use as a probe is
the wavefunction of a particle. Now under translations
not only may the direction change, but the phase also.
This allows us to introduce a vector which we can iden-
tify with the electromagnetic vector potential,

Thus what we are exploring here is the view that the
electromagnetic field is a geometrical property involved
in the description of the behavior of quantum mechanical
objects in the space—time in which they exist. The clas-
sical manifestations of electromagnetism are the limit
of quantum phenomena, which can be described phenom-
enologically on the classical level, but which need a
quantum viewpoint in order to be understood geometri-
cally.

Since the quantum mechanical wave function that we
use to explore the properties of space is complex, we
would expect that a full description of its properties
would require that space itself is complex.! It is this
concept that we wish to study here and to see in more
detail why it is suggested by quantum phenomena and
how it might be used to geometrize the electromagnetic
field.

Il. EXPERIMENTAL FOUNDATION FOR THE
COMPLEX NATURE OF SPACE-TIME

We wish here to explore the experimental evidence
which supports the relevance of the idea that space—
time is complex under certain conditions which are as
follows. First there must be (certain types) of fields
present. In the absence of (all) fields space will be flat
and the coordinates real. Second the imaginary parts of
the coordinates are relevant only if the quantum nature
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of the experimental apparatus plays a part in the mea-
suring process (although classically we could measure
the related fields but not interpret them in terms of
complex coordinates). Third the imaginary parts of the
coordinates, like the curvature of space is meaningful
only if we replace the fields by the geometry of space—
time, that is if we assume that a source produces not a
field but a different geometry. Some sources cause
space to curve while others cause it to become complex
(or to do both).

An example of how such a concept is implied by a geo-
metrical description of quantum phenomena is given by
the consideration of how we might measure an interval
of time using quantum mechanical objects. We take a
one-dimensional beam of particles, all identical and all
moving with the same velocity, spread uniformly
throughout space, and so described by a plane wave, We
now put on a uniform potential V for a time ¢, assuming
that it is done in such a way that the effects from the
transition period can be neglected. After the potential
has returned to 0 what effect has it had on the
wavefunction?

The answer is that the phase has been changed by an
amount V{. This can be measured by splitting the beam
in two before the potential is applied (to one half of the
beam) and then after the potential returns to zero doing
an interference experiment between the two halves.
Then knowing V we can find the time ¢.

This is a one-dimensional situation where only the
time coordinate plays a role. And in one real dimension
there is no geometry. How then are we to explain the
effect on the system using the geometrical properties of
time? Only it would seem by assuming that the time co-
ordinate is complex, which could give enough of a ge-
ometry to allow the possibility of such an explanation.

What is the corresponding situation in classical me~
chanics? Actually there is no corresponding one-dimen-
sional situation in classical mechanics, for there we
deal with point particles and we must have both space
and time dimensions. However quantum mechanically
the space dimension can be averaged out by assuming a
plane wave so the particle is in a sense spread over all
space. Thus only the time dimension is relevant.

Also there is never a force along the single space di-
mension so no change in its momentum or position, thus
nothing to measure and therefore no geometry is needed.

Let us consider the experiment in somewhat more de-
tail, We set up two uniformly distributed equal and op-
posite infinite sheets of charge parallel to the xy plane,
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and some distance away an identical pair parallel to the
first with charges reversed. The regions outside the
pairs have zero potential while between them the poten-
tial has a constant nonzero value.

To do the above experiment we take the particle mov-
ing parallel to the x axis and outside the pairs of plates,
and then very quickly (so the impulse is almost zero)
move one pair past the particle and leave it there for a
time, and then move the other pair past it.

There is no force along the x axis and so classically
this motion is unaffected. The impulses along the z axis
can be made as small as desired, and they can be made
equal and opposite. Hence studying the motion of the
classical particle will not provide information on the
length of time that it spent inside the potential.

This case does not provide any meaningful classical
physics. However suppose that the particle were moving
at some angle to the sheets of charge. Then there would
be forces in the direction of motion and the time it takes
to reach a certain point would be different from the time
taken by a particle which did not go through the poten-
tial, This time delay is related to the time spent inside
the potential and so provides information about it.

Quantum mechanically the situation is different. For
even if the particle is moving parallel to the sheets
there is an effect on it due to its presence in the poten-
tial, the change of phase. Hence here the one dimen-
sional case has a measureable physical consequence,

If we consider the particle moving along the z axis
then its potential varies as a function of position. We
have a square barrier potential which we study as the
next example.

In quantum mechanics this can again be viewed as a
one-dimensional problem. We take a beam of particles
spread out through space and having no time dependence,
so the time dimension does not enter the problem, and
measure its momentum outside the barrier, the change
of intensity in passing through the barrier, and the
change of phase, These three numbers are related but
two of them are independent, Thus to the point at the end
of the barrier we must assign two numbers, but there is
only one dimension,

Of course, this is not surprising for the two numbers
are the width and height of the barrier. But the point is
that we cannot use the concept of height of the barrier
because we want to replace the field by geometry, and
here the geometry is that of a single dimension. Clearly
a complex coordinate is again implied.

Classically we would take two particles, measure
their (identical) momentum before one enters the barri-
er and then the time difference between the particle
which went through the barrier and the one that did not.
This is then repeated at a different energy. The results
can again be expressed in terms of two numbers, but
here there are two dimensions since the time was
brought in explicitly.

How would we do a two-dimensional problem in quan-
tum mechanics? Of course, we might do it by consider-

ing wavepackets making the situation analogous to the
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classical case. However, this would hide the informa-
tion we wish to gain.

Let us rather consider a beam which is split into four
parts. One part goes through a barrier and in addition
has a time-dependent potential imposed on it, the second
which has only a time-dependent potential, the third
goes only through a space-dependent potential, and a
fourth which goes through no potential. Then we perform
interference experiments on the different subbeams in
pairs, and in addition measure the intensities before and
after they go through the potentials.

This will give four independent numbers, which are
the two potentials and their two durations. Classically
however, since the particles which went through the
time-dependent potential were unaffected, we get only
two numbers from the time delays at different energies
which give the two parameters of the space-dependent
potential.

So quantum mechanically we have two dimensions but
four numbers, which implies that the x and ¢ coordi-~
nates are complex with independent phases. In addition
if we attempted to describe the geometry by the curva-
ture of space we would have one number, the curvature
scalar, which is not enough.

bl

Although we are assuming that the coordinates are
complex, it should be understood that the full complex
plane is not being used, for a given field. Rather the
imaginary part of the coordinate is a function of the real
part (the function depending on the field present).

Thus we assign to a coordinate axis a complex plane,
and then replace the coordinate axis by some curve in
that plane. If the field is zero the curve becomes the
real axis, and a nonzero field pushes the curve up into
the plane.

According to the field equations that we postulate be-
low an electric charge results in both complex coordi-
nates and curved space—time, while a gravitational field
produces only curved space—time. How does this com
pare with our gedanken experimente? While we do not
analyze the problem in detail to see whether this situa-
tion is in accord with what should be expected from ex-
perimental results, the equations are not in disagree-
ment with our limited analysis.

We see from the previous discussion on how to realize
a square barrier that our analysis holds for an electric
field and we should expect that it would produce complex
coordinates as our field equations require.

However for the gravitational field, which has only
one sign of the charge, we can not do the above experi-
ments, So from our considerations we have no reason to
require that the gravitational field produce a complex
space~time.

Thus while it is by no means clear that all quantum
experiments involving the electromagnetic field can be
described in terms of complex coordinates (or even that
no classical ones imply such coordinates), our heuristic
considerations do suggest further study of this possibil-
ity and of the theories which are implied by it.
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). TENSORS

We consider a four-dimensional space of complex
numbers z,; and functions defined over it f(z,2*), where
the * denotes complex conjugation. Vectors are defined
as transforming according to

oz ., 27

Ve = 3.7 V" 55 V*", contravariant (IIL. 1)

W, = g%‘.,: W, + aa‘g” W*  covariant (11 2)
or as

V"=§§f vy, (1. 3)

W, =gz7:Wv, (1. 4)

where our summation convention is that the indices run
from 1 to 4 if the complex term is explicitly indicated
[as in Eq. (I1.1,2)] and from 1 to 8 if it is not indicated
[as in Eq. (1. 3,4)]. Tensors are defined in the usual
way as transforming as the products of vectors., Clearly
all the usual laws of tensor algebra hold here.

It is convenient (in fact necessary, when we use ten-
sors of second or higher rank) to denote conjugates by
underlining their indices, Thus $**= 8% and 7" cannot
be written with an asterisk, Also we use a%=9z* /32" and
at =23z° /az*",

In defining the metric tensor we have to decide
whether it is to be real or complex. As we saw above a
phase can be defined independently for both the x and the
t coordinates thus making it reasonable to take the co-
ordinates as complex. Further, as can be especially
seen by considering cases in which there is only one co-
ordinate, it also seems reasonable to consider the dis-
tance as complex, Hence taking the metric tensor as
real would be in accord with our analysis,

To take it as complex would imply that there are
cases in which we would have to consider complex co-
ordinates and real distances (or vice versa). This does
not seem unreasonable but no examples are immediately
evident. Hence, for reasons of simplicity alone, we
limit ourselves to real metrics.

Thus the distance function is

dszzgu Azvdz® +gLﬁzﬁdz2 +gulzdz‘—‘dz! + g, dztdz". (I11. 5)

We see below that the convariant derivative of the
metric tensor is zero. Raising and lowering of the
indices are operations defined in the usual way and com-
mute with covariant differentiation.

Contraction of indices is defined in the standard man-
ner with the sum going over real and imaginary parts.

Thus, for example,

A'B,=A'B, + A’B, + A¥'B* + A¥*B*,, (111. 6)
in two-dimensional space, and from the above transfor-
mation law this is a scalar. So contraction reduces the
rank of a tensor by 2.
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To establish the notation we prove that the contracted
product of a second rank tensor and a vector is a vector,
Let §*=T""V,+ T“tV,, then

Se=Teo+V + TV,
= (a%al, T* +af a% T** + abal T**+ abal, T¥)
X(a;"V, +a;tv,) + (0~ )
=ab(T"V, + T*4V,) +af(T2V, + T¥aV )

=ajS* + aps*.

(I 7)

To prove the reverse assume that both § and V are
vectors and we wish to show that T is a second-rank
tensor. Then

5P =afS” +af St=al(T "V, + T*2V, ) +af(T*V, + THYV,)
(1. 8)
=T, + TSV, = af[ T*(alV, + alV, + T*4(alV, +ai¥,)]
+(v—p),

and since the V’s are arbitrary we can set V and V*
zero in turn to get

T%° =qaf ayT* + a}al, T¥* +alal,T*2 + afal,T*¢ (1 9)

which is the required result.

The generalization to higher rank tensors follows the
same pattern.

If the bar under an index is not written explicitly it is
to be understood, so we may write A B* for A B*
+A, B,

IV. CONNECTIONS

In defining the connections the basic idea is that the
displacement of a vector changes not only its direction
but also its phase. Thus as in Riemannian space, we
assume that when we move a vector along a closed curve
the final vector is not in general parallel to the initial
one. And in addition we assume also that the phase of
the final vector is different, in general, from that of the
initial one,

Thus consider the wave function of a particle moved
through a one-dimensional potential (a square barrier,
say). We take specifically a time-independent beam of
particles represented by a plane wave. Then there is a
phase difference between the beam going through the po-
tential compared to one which did not go through whose
value is given in elementary quantum mechanics texts.
Suppose now that we have a mirror far downstream from
the potential and reflect the particles back to their orig-
inal position by a path outside the barrier. Then in the
closed circuit there is a total change of phase equal to
the phase difference between the beams which did and
did not go through the barrier.

Of course this analysis holds whether the wave func-
tion is a scalar, vector, or higher rank tensor. How-
ever it is usually most convenient to express concepts
and formulas in terms of vectors.

To study how to take into account the change of phase
we consider a scalar wave function ¢(x) expfia(x)x] dis-
placed an infinitesimal distance dx. It then becomes

o(x +dx) expi{{ alx + dx)](x + dx) + x dx} av.1)
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=¢(x tdx)expiale)x][l +ila, x + a+x)dx],
where the comma denotes differentiation.

We therefore postulate that the transplantation law
for a vector is

d(¢p*et)=dx ¢ et *(Th +idkx,),

and this equation defines the connections.

(Iv.2)

When a beam of particles passes through a potential
not only is there a phase change but an intensity change
also, as some particles are reflected,

Or consider a collection of atoms in some excited
state and immerse the system in a potential for a period
of time short (compared to the half-life) for free atoms.
Then the number of atoms in the excited state after the
potential will be less than before. These types of behav-
ior can be represented phenomenologically by a complex
phase, which here implies a complex connection.

While we postulate that the real part of the connection
depends directly on the potential, the complex part is
related to it in a very indirect way, and the explicit
form depends on the internal structure of the atoms. To
find this complex part the Schroedinger equation (or the
appropriate generalization) for the atoms (or other sys-
tem that we are considering) must be solved. Hence this
equation must be added to the field equations in order to
determine the behavior of the system.

We note that for a scalar
dp=1iddxx,
do* ==i¢p* dx x*.

(IV. 3)
(Iv. 4)

For a tensor the vector transplantation law is gener-
alized in the usual way except that we have to decide
whether the phase depends on the number of indices.
Suppose that we move a spinning particle through an
electric field (slowly, since the connection refers to a
virtual transplantation) then the change in energy is in-
dependent of the spin. In a magnetic field this need not
be so. In addition as we see below the connection for the
electromagnetic field depends on the charge density and
so explicitly on the wave function, and thus plausibly on
the spin. The details of this relationship are not inves-
tigated here.

Hence it is not clear from any simple analysis where
in our formalism we should put the dependence on the
number of indices. We therefore make the simplest as-
sumption and take the y term of the transplanation law
to be independent of the number of indices. We then
have, for example,

iy : .
d(¢uuem)_dxae a(¢wvr;1; + ¢uwr;;:u +1,xp¢uueia). (IV. 5)
We define the covariant derivative of the wave function
¥, =¢,e'* tobe
2,(pre’*) =2 (o, = Tho?) + ¢retila,, — X,)
= Zp‘fn - I;:Lrllwp =X =y,

and similarly (with the usual change of sign for the T'
term) for the covariant vector.

(V. 8)

The connection y, is taken as equal to f(y) (¢, +16,),

J. Math, Phys., Vol. 15, No. 3, March 1974

377

where f is some function of the wavefunction i, deter-
mined by the nature of the particular situation. This
says essentially that the energy [which we would expect
to be related to y from Eq. (IV.1) by taking dx=dt] de-
pends on the potential times the charge density.

We now consider the commutator of the cross partials

Woo = V== T, + Ghp - TR H IR (VLD
= i), = Xy 0) = R 0P =iV, fO4 +iW, ¥
+ (6, = 6,,) 0" = (f, 8, ~F 6,4

where
Ro,= =Lt Dn = Loy T Talh, (Tv.8)
V=G =& (Iv.9)
W =Eafe= 8T (IV.10)

with R the normal curvature tensor, and we assume that
x for ¢ , Ty and for x) is the same as for .

We identify the electromagnetic vector potential A
with ¢ so

A,=¢, (Iv.11)
and the electromagnetic field tensor F with V so
Foo=V. (Iv.12)

Note that we can perform a gauge transformation to
give a zero value of { only if V is zero. Thus the van-
ishing of V (assuming that W vanishes simultaneously)
is the condition which allows us to introduce real coor-
dinates. Of course, even if V vanishes, we can always
formally introduce complex coordinates.

If /=0 then in the usual way the vanishing of R is the
requirement that we be able to introduce a set of flat co-
ordinates. Again, even if R vanishes we can always in-
troduce coordinates whose metric is non-Minowskian,

However if f is not zero then we cannot introduce flat
coordinates even if R vanishes. The electromagnetic
field causes space to curve as well as the gravitational.
However its effect is rather strange coming through the
system-dependent 8’s, which are not directly related to
the field variables but rather express the effect of the
field on certain properties of the system, for example
its lifetime. It is not clear whether this result is signif-
icant or simply an indication that the phenomenological
way that we introduced the 8’s is incorrect.

Notice that the commutator of the derivatives depends
explicitly on the wavefunction, and so is different for
different wavefunctions, Also, of course, 6 depends on
the wavefunction. This is contrast to the gravitational
case where it is a property of space, independent of the
particular function that it is applied to. However this
should not be unexpected for in a gravitational field the
behavior of particles is independent of their properties.
This is not the case for the electromagnetic field,
Perhaps the appearance of the wavefunction is related to
this point.

It is not clear whether we should require the theory to
be gauge invariant. The pure electromagnetic part
should be, of course, but since there is no experimental
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information on how the presence of an electromagnetic
field modifies the gravitational field there is no reason
to require invariance in this part of the theory. It is
quite possible that the potential is determined by the
field equations and cannot be changed by a gauge
transformation.

The next step is to find a relation between the connec-
tions and the metric tensor. This is done in the usual
manner by requiring the invariance of the scalar product
along a curve (with parameter s). Thus

d
d—s(guni*“'fl")

d&*u
ds

dx* dan®
=8uerogg Eremet g, 1+ g, E* an” _ ,
ds (Iv.13)
which gives
gux.p+gwxr:p +gwl';"; —igu,(x,* + igu,‘X,ZO, (Iv.14)

and in the normal way rotating indices cyclically, adding
and subtracting we get the required relation

1 1,
L= —ngp(gpu.x * 8o —guk,p) - 62 21(— Xs+ xx)

(IV.15)
. 1
— Q5+ X,) + g gil= X+ x),
so assuming f is real,
[o=—{o}+62r6,+06°f0, —g,,.f0°, (Iv.16)

where {} is the Christoffel symbol.

Equation (IV. 13) requires some comment in view of
our requirement that the phase term in the connection be
independent of the number of indices which would seem
to be in contradiction with our differentiation of each

“term.

However here what is important is not that we have a
product of two vectors, but that we have a product of a
term and a complex conjugate (both assumed to have the
same phase connection). So, quantum mechanically if
we had such a product it would represent a particle of
zero charge which would consist of two oppositely
charged particles, and which would have no phase
change in going through a potential, but which might be
reflected or be caused to decay because of the interac-
tion of the internal particles and the field. Thus the
connection would depend only on the imaginary part of
the connection, as we have it. This is the reason for
requiring this scalar product to be invariant.

Equation (IV. 14) shows that the covariant derivative
of the metric tensor is zero, as can be seen by writing
this derivative out and comparing equations, and re-
membering that the charge function f is zero for the
metric tensor g so this term drops out.

It might be noted that some of the equations are
superficially similar to the corresponding equations in
Weyl’s theory.? However the physical rationale and the
mathematical structure are completely different. For
example in our case of connection, Eq. (IV.16), depends
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not on the electromagnetic potential (which is £) but on
the factor f6.

V. THE CURVATURE TENSOR
The curvature tensor obeys the symmetry equations
Ry, =-Ry,, (v.1)
and
L e (v.2)

as can be seen directly from its expression in terms of
the connection.

From these symmetries we can derive the Bianchi
identities. We denocte (x,., ~ X,.,) by 7,,, and by direct
computation we see that 7,,., has the symmetry given by
Eq. (V.2), using Eq. (V.2), and the symmetries of R.

Also a second-rank tensor obeys

QO —RE QP —RP. QM — u
$2gine = ;00 = Riy %, — RE, U — i T, 8%,

Now differentiating Eq. (IV.7) we get
Vnre = Vine = Rigps ¥+ Riog ¥y =i T 0t —iThy 4.
(v.4)

Rotating the indices 0, &, ¢ cyclically, adding, using the
symmetry of 7 to eliminate the 7,, term, and substi-
tuting Eq. (V.3) into the left-hand side so it cancels the
R,,, and T,, terms, we get ¥ times a coefficient, equal
to zero. But since ¥ is arbitrary (within a class, all of
which have the same f) the coefficient must be zero, and
this is the Bianchi identity.

+ Re + R# =0. (V. 5)

Eppim enpi &

(V.3)

R

#tn;o
From this it follows that the Ricci tensor is diver-

genceless, so
1
Gle= (R — 58" R);,=0. (v.6)

We have an expression above for the curvature tensor
in terms of the connection I'. It is more useful to write
it in terms of the metric tensor and the 8’s. To do this
we use Eq. (IV.16).

We then get that the curvature tensor is

Rne=Ton,e = Log,n — Lol + Lol
== [{:w}.z - {se}.n - “n} {:t}+ {:le} {:n}]
+f2[— 65 6,6, + 6} 9,,0’ + (6#gﬂt - agg,w)e*ox
_gpteuon +gpn0€9u] +f[6:(0n.c - oc,n) + G#Gme
=04 0y = Znp0% ¢+ £,06% = 280,00 + 28, 0" + g, (516
~ gttt + 056, {5ek ~ 0% ., H + (85 (1,6, - £.40,)
+ (08 f, =0 )6, + (g fn — gk ]

(V.7

We next need the value of 6 =6;+65=4+4 or 8.
The contracted curvature tensor is
Ry, =Ryq

==[{nh, = b, - EHL LN

+£10,, =86, 0= 20,0, + 0,6 }0* = 28,0

+2g,, 6" +8,,0% -2, {t0" - 1051 + 6%~ g,,676,
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+ epen] + [.f;paﬂ - 7.f;1lep —g’"j"ue“], (V. 8)
and the curvature scalar equals
R=R_+f[-"1g"6, ,-56°¢"(g,,,, ~&un,,) =~ T¢,]
~42%6,6° - 141 6°. (v.9)

The subscript ¢ means the Christoffel symbols have
been substituted for the connections T'.

Note that the curvature a particle sees depends in
part on its own state vector.

Unfortunately we cannot introduce, at this point,
enough field equations to determine completely all the
quantities appearing in the theory. To do this, we would
probably have to add more quantum mechanical
formalism.

However we can assume some relations. These are
Maxwell’s equations

vir=i,

(V.10)
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and the Einstein field equations
G =xT™, (v.11)

where j is the current density and T the energy-momen-
tum tensor.

The Einstein field equations are modified by the pres-
ence of the electromagnetic field and depend specifically
on f, the charge function for the particle moving in the
gravitational field. Thus these equations imply that the
gravitational field that a particle feels depends on its
charge, and possibly its charge distribution. Whether
this disagrees with experiment is not clear as the theory
is not developed enough to predict the value for f, or 6,
which also affects the field.

"The possibility of complex space-time has been explored in other ways
by A. Das, J. Math. Phys. 7, 45 (1966); J. Math. Phys. 7, 52 (1966);
J. Math. Phys. 7, 61 (1966), and E. H. Brown, J. Math. Phys. 7, 417
(1966).

2R. Adler, M. Bazin, and M. Schiffer, Introduction to General
Relativity (McGraw-Hill, New York, 1965), Sec. 13-2,3.
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~
The continuous unitary irreducible representations of the covering group S U (1,1) of S U (1,1) are
studied using the self-adjoint representations of the Lie algebra in the case that one of the
noncompact generators is diagonal. The study can be carried out for all the representations
simultaneously and is shown to reduce to a study of the self-adjointness of the compact element of
the Lie algebra, which in this basis turns out to be the confluent hypergeometric operator. Several
basic results, such as the classification of the representations, and a formula for the transformation
coefficients from the compact to the noncompact basis which is valid for a// representations, emerge

quite simply.

INTRODUCTION

The continuous unitary irreducible representations
(CUIR’S) of SU(1,1) and its covering group SU(1,1) can
be studied either through the finite group'~® or through
the self-adjoint representations of the Lie algebra ° The
latter method is based on Nelson’s result® that a Lie al-
gebra will exponentiate to a CUIR of the corresponding
simply connected group if and only if an operator ‘con-
sisting of the sum of the squares of the generators is
self-adjoint. Most of the standard treatments use the
finite group, and those treatments which use the Lie al-
gebra are mostly confined to the case in which the com-
pact generator is diagonal. However, the general pro-
cedure for the case in which a noncompact generator is
diagonal has been sketched in Refs, 7 and carried
through in some detail for SU(1,1) in Refs. 8. In this
paper we carry through the general procedure in a dif-
ferent manner to Ref. 8. Our method is such that all the
CUIR’s of SU(1,1) can be treated simultaneously, and
that many of the results found by other methods, in-
cluding the classification of CUIR’s, can be obtained
quite simply. More specifically, we show that

(1) The generators of Lie algebra can be expressed as
differential operators, which are unique up to a unitary
transformation, and are the same (apart from the value
of one parameter) for all CUIR’s of §U(1,1). Two of the
independent generators are trivial, while the third, the
compact generator J,, is the confluent hypergeometric
operator,?® a result that explains at a very elementary
level the occurrence?:® of the confluent hypergeometric
(Whittaker) functions in the study of the finite group
representations,

(2) The self-adjoint condition for the generators reduces
to a condition of orthogonality for the eigenfunctions of
the compact generator J,, and the orthogonality condi-
tion leads at once to the standard classification of the
CUIR’s of §f](1, 1) and to a formula for the transforma-~
tion coefficients from the compact to the noncompact
basis which holds for all CUIR’s. The classification pa-
rameters emerge, respectively, as the value of the Ca-
simir operator for the Lie algebra, and the parameter
characterizing the family of self-adjoint extensions!® of
J, in the case when it is not naturally self-adjoint. The
formula for the transformation coefficients agrees (up
to a phase) with the separate results for the principal
and discrete series obtained in Ref. 2
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We conclude the note by illustrating the difference be-
tween our results and those of the other authors® who
use a noncompact basis for the Lie algebra by exhibiting
for the principal series the unitary transformation
which connects the two results.

2. LIE ALGEBRA, CLASSIFICATION AND
TRANSFORMATION COEFFICIENTS

In the conventional basis, the Lie algebra of Su( ,1)
is
[Ja’Jb]:iE A,

abc’ ¢ ¢

a,b,c=1,2,3 \,=2,==2,=1.
2.1

and the Casimir operator, which is a real number in
any CUIR of SU(1,1), may be written as

uz—%=J§—Jf—Jf. 2.2)

Let J; + J, be the noncompact element which we wish to
have diagonal. From (2.1) it is clear that J, and J, +J,
form the two-dimensional subalgebra

[Jz’Jl+J3]=i(J1+J3)5 (23)

and it is easy to verify!! that the only nontrivial self-ad-
joint representations of this algebra are unitarily equiv-
alent to the representations

. d de
srn=e heiger [ fglwol< -

(2.4)
on (- 0] and [0 «). To complete the basis for the Lie
algebra (2.1) we add the compact generator J,, and
using (2.1), (2.2), and (2. 4) obtain for it the differential
form

J3=—%(€(%—e+(%—u2)e“)' 2.5)
From (2. 2) we see that the Nelson operator can be
chosen to be 2J2 + 1 — u? It then follows from Nelson’s
result that the necessary and sufficient condition for the
differential operators 2. 4) and (2. 5) to generate a CUIR
of SU(1,1) is that J, in (2. 5) be self-adjoint. But since,
in every CUIR of §'U(1,1), the spectrum of J, can easily
be shown from (2.1) to be discrete'? (indeed integer-
spaced and simple) the self-adjointness of J; is equiva-
lent to the orthogonality of its eigenvectors. Thus the
analyses of the CUIR’s of SU(1,1) reduces to an analysis
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of the eigenvector system of the differential operator J,
belonging to real discrete eigenvalues k.

To analyze this eigenvector system we let () be the
eigenvector belonging to the real eigenvalue .2 Then
from (2. 5) 9,(€) is a square integrable solution of the
equation J,y,(€)=ky,(e) which, on making the trivial sub-
stitution 7= 2¢ reduces to the confluent hypergeometric
equation®

2 4 1 2
[j—ﬁ+(—41+’§+ 4;2“ >] o, (H)=0, o,)=1,(). (2. 6)
Thus we obtain at once a direct relationship between the
Lie algebra (2.1) and the confluent hypergeometric equa-
tion and we can use the known properties of the solutions
of that equation to analyze the eigenvector system of J,.
In fact, the two linearly independent solutions of (3. 2)
are the Whittaker functions W, (+f), and we shall actu-
ally need only their asymptotic properties®

W, ()=tre 2 [1+ O(™)], ¢,

(2.7)
/_ZH -2u
Wy ()=l pw (220 pra)
WO\ Tk

[1+0@®)], t—0.

@.7
From (2.6) we have by partial integration
* —k’)[ ‘% W, (OW,, (1)
© 2 T d
=00 W (OW,0, (1) = W, (OW,,, (], W=7W,  (2.8)

Hence from (3. 3) and (3. 4) we see that a solution is
square integrable and we have the possibility of genera-
ting a CUIR of SU(1,1), if p* <3 for all real k or p?= 1%
and +k=Iul +3 +n, n=0, 1, 2,... . Furthermore, in
those cases we have'®

"at
t

T
wu ()= (2 -k sin27pu

X( 1 1 _ 1 __1__) 2.9)
Mrpu=k (Tup E-u-k Ayu=%) =

W, W

whence

d_t W-ku (" tW—k'u. (_ t) _’:/‘.u ﬂ Wku(t)W,..,, (t)
VBT uE e Touve St SFEFRE ATuAE

_sinn(e —%")

=S (2.10)
1t follows by inspection of (2.9) and (2.10) that in gener-
al we obtain an orthogonal set of eigenvectors for J if
and only if the spectrum of J, is integer-spaced and we
take the full ¢ axis (- «,»), The only exception occurs
when p?20, +2=|pl +$+n, in which case the spectrum
is still integer-spaced, but we have orthogonality on the
half-axes. Even that case, however, is included in the
formula (2. 10) since for +2=1 u| + % +» one of the
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terms on the left-hand side of (2. 10) vanishes

identically.

__The above results allow us to classify the CUIR’s of
SU(1,1) immediately, and we obtain the conventional re-
sult, namely,

(1) p*20, 2k=\lpl+3+n n=0,1,2,... (discrete

series),

2)i>p%>0, 0,1>h=0,k=h+n (except 2= p + 3) (exep-
tional series),

) u2<0,0,1>r=20,k=h+n (exept p=0, 2=13) (princi-
pal series).

The exceptions for the series (2) and (3) are simply to
avoid overlapping the discrete series. The CUIR’s for
SU(1,1) are obtained by imposing the extra restriction
2%k = integer.

A bonus which we obtain from (3.11) is the set of
transformation coefficients (&|¢) from the compact to
the noncompact basis, since these are nothing but the
normalized eigenfunctions ()= ¢,(¢). For the principal
series u is pure imaginary, so we can normalize dir-
ectly from (2.10). Since W,, is even in u, it is real for
all three series of representations, and hence for the
principal series we obtain

f %E[w_*;(t)w_k,(t) + WHOW ()] = Oy (2.11)
o
for k ~k’=integer, where

)= (L~ p+k)* W, (@), p+u*=0. (2.12)

For the other two series u is real and we do not obtain
the complex inner product so simply. What we do is in
that case to introduce the function

NE k)= A+p+e E=pu+r (L+u+r )" (A-u+r),
(2.13)
and multiply equation (2.10) across by NY2(¢,k’). Since

N,k')=N(-k, —F) for k -k’ integer, we obtain (2.11),
but with now

w, = (E=p TRV (S+uF Ry V2 W, (), u=p*.
2.14)

Equations (2.11), (2.12), and (2. 15) can be combined to
give a formula for the transformation coefficients which
is valid for all CUIRs of SU(1,1), namely

w,(2¢), €>0
|e)= =

w.(—~2€), e<0

w,(2€)
€> 0,
w._,(2€)

w )= (L =p+RyV2 (T * +RyV2 W, (8).
(2.15)
For the principal series the factor preceding W, (#) in
(2.15) simplifies slightly to (/1 - p+£)™, while for the

discrete series one of the functions w*k(Ze) vanishes
identically, and the other simplifies to

W)= (=D (12Tl +n+ D2 (D221 pl+ D
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=t/240ul41/2
x et L @.16)

where L}!4!, (¢) is the associated Laguerre polynomial.

Let us now compare our transformation coefficients
with those of other authors. For the exceptional series,
no other orthonormalized coefficients seem to be avail~
able, but for the discrete series our results agree ex-
actly with those of Refs. 2 and 8, and for the principal
series our results agree with those of Ref. 2 up to the
phases e'%= /L= ush (/X4 pFh)! for w,,(#) [the w, (1)
are relatively real in this reference].

3. COMPARISON WITH REF. 8

So far as we know the only authors to use a similar
approach to ours are those of Ref. 8, and, except in the
case of the discrete series, their actual procedure dif-
fers markedly. We here illustrate the difference by ex-
hibiting the unitary transformation which connected the
two approaches in the case of the principal series. We
start with the generators

Ji+J;=e@T1=¢*® 7 and G +Gy=¢* (ig;+l+0>®‘r,

2
d d d
—je—®1 =§ — & =i—Q
Jy zedel U 1, G, U 1,
dz 1 2\ -1
Jy =dy= ed——€2+(;+q YelidT
d 1Y 2]
=Xl === ®
e [(dx 2)” T
ol .d 1
GI_GS=e <—ld_x+§+O)®T, (3,1)

respectively, where pu=io (o real), €20, and 7= (2).
The range e<0, 7==zx1 is equivalent to the range

(— o < ¢ < ) which is necessary for self-adjointness, but
the introduction of 7 simplifies the notation and allows
the introduction of the variables x=1loge. Bothe J, and G,
satisfy the commutation relations (2.1) and the Casimir
relation (2. 2), and the essential difference between them
is that whereas J, +J, and J, —J, are zero and second-
order differential operators, respectively, G, +G, and
G, - G, are both first order. G, is then a first-order dif-
ferential operator, with the simple orthonormal eigen-
function system

(3.2)

1 1—ie” 1
6,(x)= ( o

(27)72\ 1 + je*/ (coshx)¥?-ic’
and this is the chief advantage of the G,. The diadvan-
tage of the G, is that they are Hermitian only in the case
'of the principal series (though the authors of Ref. 8 ac-
tually use the G, for the exceptional series also, com-
pensating the lack of Hermiticity by the introduction of
an indefinite metric).
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We now seek a unitary operator U which will connect
the J, and G,. Since any such U must commute with J,
=G,, it is convenient to make J, =G, diagonal, i.e., to
take the Fourier transform of (3.1). We then have (3.1)
with

'i— % __ p=i{d/dy)

i) e=e s
where the domain of ¢*t‘#4» ig the set of functions ana-
lytic in the strip 0 <Imy <1 and square integrable on the
lines Imy = const in the strip, and the required transfor-
mation is

(3.3)

‘], z=i-dily+o). (3.4)

[Ez— eiu e-h
U(y)=W e-iu eiu

It is easy to verify that U(y) is unitary and satisfies

J,=U"(y)G,U(y). (3.5)
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A new commutative diagram summarizing some of the mathematical structure of deterministic
classical electrodynamics is presented. The diagram clearly delineates the fundamentally different
roles played by the space-time differentiable manifold (vis @ vis exterior calculus) and by matter or
vacuum (vis a vis the constitutive relations for dielectric permittivity and magnetic permeability) in
electrodynamics. Two different elliptic operators, called here the Laplace-Beltrami and
Laplace—Poisson operators, arise naturally from this formulation. Some properties of eigenfunctions
of elliptic operators with compact support are briefly reviewed with regard to potential application in
numerical analysis of practical problems in electrodynamics. The action of the so-called
inhomogeneous Lorentz group on electrodynamical functions is described. Several scalar inner
products which remain invariant under the action of this group are seen to arise naturally from the
mathematical structure discussed here. By using some of these invariant quantities, a new variational
approach to deterministic classical electrodynamics is then developed. First, a new Lagrangian
function is presented and used to derive the Euler-Lagrange equations for electrodynamics. Second,

a series of new Hamiltonian functions are presented and used to derive the Hamiltonian equations
for electrodynamics. All results are illustrated by a detailed examination of the electrodynamical

structure of a model for an inhomogeneous nonisotropic medium.

1. INTRODUCTION

Although an extensive literature exists on mathemati-
cal aspects of deterministic classical electrodynamics,
there is apparently no clear rigorous exposition on the
relationship of exterior calculus and differential forms
to Maxwell’s equations. This is somewhat surprising,
because exterior calculus would hopefully clarify some
of the mathematical structure underlying electro-
dynamics, while offering a different (more formal but
less physical) view of the structure than that of con-
ventional or classical vector calculus. Such work hope-
fully would continue the interaction of mathematics
and physics, which has been so fruitful in the past.
Finally, the tremendous technological importance of
electrodynamics lends added interest to such work.

This paper attempts to fill some of this gap in the
literature. The scope is limited to a particular class of
models for an inhomogeneous nonisotropic medium.
Within this framework, a number of novel and well-
known results are obtained more easily and naturally
than by methods based on conventional vector calculus.

The goal here is to unify and simplify certain
mathematical aspects of electromagnetism. An example
of a successful attempt along similar lines can be found
in modern communication and control theory, which
have been greatly unified through the concept of state
and state variable techniques. It is hoped the approach
discussed here will find application in other branches
of physics, just as state variables have found wide
application (e.g., in electrical network theory and in
control system theory). This hope must be tempered by
the following observation: Many practical problems can
be adequately modeled by a set of first order ordinary
differential equations, where the state space is a
finite-dimensional vector space. The analogous state
space for a distributed parameter system, such as is
discussed here, is a finite-dimensional differentiable
manifold and the vector fields associated with the
manifold. The dimensionality of the state space for
lumped parameter systems can be anything in practice;
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the underlying manifold for distributed parameter sys-
tems might be only four-dimensional, three spatial and
one temporal, in practice. This suggests that future
work should be directed toward a better understanding
of the peculiarities of the four-dimensional case, as
well as toward generalizations in higher dimensions.

Although interesting in their own right, the results
presented here are interesting from a purely pedagogi-
cal point of view as well. One need only known the
operations or rules of exterior algebra, as well as how
to compute the total differential of a function; then the
calculation of gradient, curl, and divergence become
routine formal manipulations, but unfortunately often
devoid of physical insight into the nature of the calcula-
tion. The conventional or classical vector calculus ap-
proach, with its line integrals and pillboxes, compli-
ments this method by offering great physical insight
into the nature of the calculation, but often at the ex~
pense of algebraic complexity in computing the correct
answer. Both approaches have their merits and dis-
advantages, offering different views on the same
situation.

The initial motivation for this work is found in
Flanders,! While it was felt his approach was basically
sound, it seemed sketchy at points and could be con-
siderably more detailed. Another impetus is found in
Dyson, ? who has observed that the foundations of ex-
terior calculus were laid by Grassmann in the mid-
nineteenth century, but the tools he developed were
discarded when the mathematical structure of electro-
dynamics was considered, in favor of tools developed
to describe the structure of Lie groups and Lie
algebras.

An appendix is included sketching and illustrating
the basic concepts of multilinear algebra, differentiable
manifolds, and exterior calculus. The reader familiar
with these topics can proceed directly to the main body
of the paper; otherwise, this detour is advised.

The second section presents a commutative diagram
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which summarizes the electrodynamical equations for

an inhomogeneous nonisotropic medium; this is analo-

gous to a block diagram or signal flow graph in control
and communication theory.

The third section discusses two different differential
operators which arise from this formulation of electro-
dynamics; previous work has tended to ignore or ob-
scure this point. Various properties of the spectrum
and eigenfunctions of these operators are briefly re-
viewed, for the case where the operators are elliptic
and compactly supported.

The fourth section dwells on a group of coordinate
transformations which preserve the structure of the
equations of electrodynamics. Several well-known and
new scalar inner products are seen to arise naturally
from the approach discussed here.

The fifth section develops an alternate calculus-of-
variations approach to the mathematical structure of
electrodynamics. A new Lagrangian function is dis-
cussed, and all of the electrodynamical equations are
derived from it. A new series of Hamiltonian functions
are derived from Legendre transformations on the
Lagrangian, and all of the electrodynamical equations
are rederived.

All these results are illustrated by examining again
and again a model for an inhomogeneous nonisotropic
medium.

Il. ACOMMUTATIVE DIAGRAM

Throughout this section, X is an oriented Riemannian
differentiable manifold called space—time. * T} denotes
the cotangent bundle associated with X, and A(T;!;)
=74 0 M(T¥) the associated exterior algebra. This sec-
tion is broken into two parts: first, a diagram is pre-
sented which summarizes Maxwell’s equations for a
particular class of inhomogeneous nonisotropic media
(in effect, the equations can be read off with the aid of
this diagram); second, an example is presented to
illustrate more clearly this result.

Theovem (Classical electrodynamics-—Maxwell’s
equations): If M: A*(T§) —~ A*(T}) is a smooth function of
A*(T%), and is invertible at every point of the manifold
X, then the diagram shown below commutes

A0_d prdpz dops

dzoMocizl dOMOdl Ml TM'I T doM'lodT d?oMed?
d d d d

A4<-— A3 <_A2<_Al <_A0

d A4

where d is the exterior derivative.

Proof: The proof proceeds in three steps: (i) all
operations shown above must be well defined on all
charts of the manifold, i.e., locally; (ii) all operations
must be capable of being pieced together smoothly on
overlapping charts; (iii) the diagram must commute,
i.e., be independent of path. Since the exterior deriva-
tive and the linear transformation M are well defined,
all operations shown in the diagram are valid on each
chart of the manifold. On overlapping coordinate charts,
the transition functions associated with these charts can
be used to smoothly piece together the operators M,
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M, doMod, doMtod, dPoMod?, d*M™od®. Finally, the
diagram commutes, because of the two preceding steps.

Remark: Since d2=0, the maps from A®— A* are
trivial.

Example: Choose rectangular orthonormal basis vec-
tors {dx,dy,dz,icdt} for X, and orientation +dxA dy
Adz Aicdt. (c is the speed of light.) The physical nature
of each differential form is well known:

(A) A°—g,, g, —electric, magnetic gauge.

(B) A'—(4,,,4,,4,), (A,.,A,.,A,)—electric, mag-
netic vector potential; ¢, ¢ —electrical, magnetic
scalar potential.

(¢) A*—~(D,,D,,D,), (B, B, B,)—electric displacement,
magnetic flux; (E,,E, E,), (H,,H, H,)—electric, mag-
netic fields.

(D) APl s I s Iy gy I,y J, ) —magnetic, electric
current densities; p,, p, —~magnetic, electric charge

densities.

(E) A*—~s,,s,—magnetic, electric source.

_The question arises of how to associate which differen-

tial form with which electromagnetic function. The
choice adopted here offers a certain amount of physical
appeal, and is self consistent and complete with respect
to exterior calculus,

Since X is a four-dimensional differentiable manifold,
the differential forms may be interpreted intuitively as
follows:

(1) A°~gauge—scalar functions of space—time.

(2) A'—potentials —directed line elements or 1-
volumes in space-—time,

(3) A®*—fields—directed areas or 2-volumes in
space—time, in part directed along purely spatial di-
rections (dyA dz,dz A dx,dx A dy) and in part directed
along a mixture of space—time directions (dxA icdt,
dy Aicdt, dzA icd).

(4) A3—current densities —directed shells or 3-
volumes in space—time in part directed along a purely
spatial direction (dx/\ dy/\ dz) and in part directed along
a mixture of space—time directions (dyA dzA icdt,
dz dx N\ icdt, dx Ny icdt).

(5) A*—sources—directed volumes or 4-volumes in
space—time.

It is interesting to give a physical interpretation to the
commutative diagram, much as in control and communi-~
cation theory problems one gives a physical interpreta-
tion to a block diagram. Suppose, for example, a 1-
form or potential is known at every point in X. The ex-
terior derivative of this potential specifies a 2-form or
field at every point; applying the constitutive relations
plus the exterior derivative to the field specifies a 3~
form or current density, which in turn feeds back to
modify the potentials, and so on.

In this choice of coordinates, Maxwell’s equations
can be written using exterior calculus as:

. 0 . d .
(1) d(g, +ig,) = b;(ge +ig,)dx + 5‘;(& +ig,) dy
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+ —(g +ig,)dz + Bt (g, +ig,)icdt
=c(A,, +iA, Jdx+ c(A” +iA,)dy
+c(4,, +iA, )dz+ (@, +ip Yicdt,
@) dlc(A,, +iA,)dx +c(A,,+iA, ) dy+c(A,, +iA,,) dz
+(@,+ip Yicdt]

_<_C(A +iA, )— c(A +1Amy)>dy/\ dz

+ (aaz clA,, +iA,) - c(A +iAm)> dzN\dx

+<£ (A,,+iA,) - c(Aex+zA )> dx/\dy
0 . .

+ (5‘; (¢, +ip,) - P clA,, + zAm)> dx/\icdt
0 . .

+<a—' () —Ec(Aey+zAm)> dyMNicdt

+<£Z-(goe +ip,) - %%c(A” + iAm)> dz/\icdt
=c(D, +iB) dyAdz + c(Dy + iBy) dz/\ dx
+¢(D,+iB)dx/Ady + (E, +iH ) dx/Nicdt
+(E,+iH ) dyNicdt +(E,+iH,) dz/\icdt,
(3) dlc(D, +iB,YdyA dz + c(D, +iB ) dz/\ dx
+¢lD,+iB,)dx/Ady + (E, +iH ) dx/\icdt
+(E, +iH ) dyNicdt +(E, +iH ) dz/\icdt]

=<%(Ez+in) 55 (B, +ill )+ c(D +iB ))

. ? . K3 ,
XdyAdzNicdt + <az (E, +iH) - Py (E,+1iH)

+ mc(D +iB )> dz/\ dx/Nicdt +<—(E +iH)

9 0 ,
—— i 4 — +iB
3 (E, +iH) icat c(D,+i z)) dx/AdyNicdt

+ (% e(D_+iB)+ —a—a; (D, +iB)+ %c(Dz +1¢B,)
xdx /A dy/\ dz

=(J,, +id, ) dyNdzNicdt + (J, +id,) dz/\dxAicdt
+(J,, +id,,) dxAdy/Nicdt + cp, +ip,) dxNdy/Ndz,

@) dl(J,, +id,)dy/AdzNicdt+(d,,+id,)) dz Adx/Nicdt
+(J,,+id,,) dcAdy/Nicdt+ clp, +ip,) dx\ dy/\ dz]

] , 2 . 3 .
= (a_x' (I +3,,) + 'a;(J"w +id,,) + -a—z(Jm +id,,)

“ic at
={s, +is,) dxAdyAdzNicdt.

—=clp, +ip )) dx/\dy/\ dz/\icdt

The classical electrodynamics equations are found
by equating real and imaginary parts of (1)—(4). The
sign on ¢, and p, must be reversed to conform to that
standard in physics.* It is assumed here the transfor-
mation M can be written in matrix form for an in-
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homogeneous nonisotropic medium as

—cDx dyAdz ] !;Dx dy/\ dz |
cD, dz/dx cD, dz/Ndx
cD, dxAdy N - cD, dxAdy
E, deiicar|TIPMes HA=pleeMach | g Ajoar| o
E, dyNicdt E, dyNicdt

| E, dz/icdt] | E, dzAicdi
¢B, dyAdz ] [cB, ayAdz ]
cB, dz/Ndx cB, dz/Adx
cB, dx/Ady ~ 5 cB, dx/A\dy
b, axAicat|~ PMuex + @ =Pexeye} |y o |
H, dyNicadt H, dyNicdt
H, dy/\zcdt | H, dz/\zcdt

where 0< p<1, In this example, M is assumed to be a
convex combination of the star operator, M and M,,
where

~ 0 ce ~ 0

Mgo=1| ;. =1 _, _
E clel 0 u ctptt

cp

0 ’

where g, € are 3xX3 matrices, 0 is the all zero 3X3
matrix. p is called magnetic permeability, while € is
dielectric permittivity; the units are meter - kilogram
- second.

In other treatments®'® a different set of units are
often used: In these units the dielectric permittivity e
and magnetic permeability p are rescaled, and it is
frequently states that (in these units) E, =D, H =B,
and so forth. Strictly speaking, these equalities are
quite ill-defined because the electric field (E, E, E))
and electric displacement (D, D y,D‘) lie in orthogonal
subspaces of A%, as does the magnetic field (H ,H, ,H)
and magnetic flux (B,, B, B,). To emphasize this often
ignored fact, meter -kilogram - second units have been
adopted.

In order to model the inhomogeneity of the medium,
matrix elements in € and p are smooth functions of
x,v, z and ict. To account for the anisotropy of the
medium, € and p are assumed not to be similar to
scalar multiples of the identity matrix.

Clearly, this choice of assumed constitutive rela-
tions for M is not the only one that can model an in-
homogeneous nonisotropic medium: The only essential
assumption is that #7 must be invertible on its support,
X. The example here was chosen as illustrative of
linear constitutive relationships; it can be generalized
in any number of ways. For example, the next section
shows AZ%(X) can be considered as a Hilbert space, the
space of all functions in L2(X); M may now be defined
as an invertible operator defined on Hilbert space.
Other generalizations are possible.

1. ELLIPTIC OPERATORS

Two differential operators are seen to arise naturally
from this formulation of electrodynamics, the Laplace—
Beltrami operator and the Laplace—Poisson operator.

The Laplace—Beltrami operator & =d6 + dd, where
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8 =xodox, is elliptic (Warner, Ref. 7, pp. 250~-251),
and

A: AX¥ AKX, K=0,1,2, 3,4,

Since A depends only on the underlying manifold X, a
picturesque description of A is that it is totally
geometric or topological in nature. If X is a compact
manifold, then the Hodge decomposition theorem shows
that any differential form u,€ A? ($=0,1,2,3,4) can be
written as the sum of an exact form, a coexact form,
and a harmonic form which lies in the finite-dimen-
sional kernel of 4,

u,=u @ du, F®ou,,°, p=0,1,2,34,

4

where the superscripts H, E, C denote harmonic,
exact, and coexact, respectively (Ref. 7, p. 223).

The Laplace—Poisson operator doMed=doM'od de-
pends partly on the underlying manifold X (via the ex-
terior derivative d) and partly on the physics (embodied
in M); this operator may be considered as partly
geometric or topological and partly physical. In the
special case which is of great practical interest where
the Laplace—Poisson operator can be shown to be
elliptic (e.g., constant permittivity € and permeability
#, a homogeneous nonisotropic media) a great deal
more can be ascertained. If X is compact, then any
p-form may be written as the sum of a p-form lying
in the finite-dimensional kernel of the operator, plus a
term in the orthogonal complement of this vector space.

Since the Laplace—Beltrami operator is always
elliptic, while the Laplace—Poisson operator is often
elliptic, a brief review of some of the properties of the
eigenfunctions and eigenvalues of elliptic operators is
included. Let E be an elliptic operator whose support
is on a compact manifold X; then it is well known that
(Ref. 7, pp. 254—256)

(1) nontrivial eigenvalues and eigenfunctions of E
exist,

(2) there are an infinite number of eigenfunctions,
(3) all eigenvalues are nonpositive,
(4) the eigenfunctions are complete in L3(X),

(5) any function in L*(X) can be uniformly approxi-
mated by a sequence of these eigenfunctions, on X,

(6) the eigenvalues have no finite accumulation point,

(7) the eigenspaces associated with each eigenvalue
are finite-dimensional.

Exgmple: From the Hodge decomposition theorem,

(A) g, +ig, =fa & off,

(B) c(4,, +iA, )dx +c(A, +iA )dy +c(A,, +iA, ) dz
+(@,+ig Yicdt=fe® 6fF @ 6fF,

(C) c(D, +iB,) dyA dz + c(D,+iB ) dzeA dx
+c(D,+iB,)dx/\dy +(E_+iH ) dx/Nicdt
+(E,+iH ) dy\ icdt + (E, +iH ) dz/\icdt

=f @ dff @ o7,
D) (J,, +id,,) dy Adz Nicdt +(J,,,+id, ) dyA dx Nicdt
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+(J,, +id, ) dx\ dy/Nicdt + c(p, +ip,) dx/\ dy/\ dz
=f{ @ dfy & ofF,
(E) (s, +is,) de/Ady\ dz/Nicdt=ff & df

where ff,fE,fS e A¥ (K=0,1,2,3,4), and the super-
scripts H, E, C denote harmonic, exact, and coexact,
respectively. If X is compact and simply connected, it
can be shown that (Ref. 7, p. 158 and pp. 226 —229)

#— const,
H=0, ff=0, ff=0,
H = (const) dxA dy/\ dz/Aicdt,

corresponding physically to a source-free region of
space—time. The terms &fF (K=1,2, 3, 4) and dff
(i=0,1,2, 3) can be expressed as linear combinations of
eigenfunctions of the Laplace—Beltrami operator. The
exact and coexact forms are also called Heriz veciors.*

The Laplace—Poisson operator, since it is a different
operator from the Laplace—Beltrami operator, will in
general have different eigenfunctions. Note that any 3-
form can be expressed as an infinite linear combination
of these eigenfunctions denoted {#3}, ¥=1,2, . Using
the exterior derivative d, its adjoint 6, plus the Hodge
star operator x, the following statements hold (recall
the underlying manifold is four-dimensional, so d#:=0)
on a compact manifold:

(i) Any O-form may be written as an infinite linear
combination of

fuodeill), kB =1,2,---,

(ii) Any 1-form may be written as an infinite linear
combination of

{*017:}, k=1,2,---,

(iii) Any 2-form may be written as an infinite linear
combination of

{6;;:}! k=172,“',

(iv) Any 4-form may be written as an infinite linear
combination of

{ﬁ:}’ k=12,

This finding may have practical application. In semi-
conductor device work, or in transmission of electro-
magnetic energy, Maxwell’s equations plus real bound-
ary conditions are often analytically intractable, and a
mumerical approximation to the true solution must often
be used. One type of numerical approximation is to ex-
pand all functions as a sum of a finite number of
orthonormal functions, and to truncate the sum when
an error criteria is sufficiently small. The approach
presented here makes it possible to choose from two
different sets of orthonormal functions; under some
circumstances, one set may be preferable to the other.

1V. SOME GROUP THEORETIC ASPECTS

In certain situations, a great deal of insight is gained
by a change of coordinates. This section is concerned
with a class of coordinate transformations which form a
group, and quantities which remain invariant under this
class of transformations.
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Consider the semidirect product of the Lie group
SO(4) with an affine group T, G =S0(4)X T (X denotes
semidirect product); G is called the inhomogeneous
Lorentz group. One parameter subgroups of T corre-
spond physically to translations of the origin of the
space—time coordinate frame. One parameter sub-
groups of SO(4) correspond physically to rotation about
an axis or motion along an axis. It is straightforward to
show G acts transitively on X: given x¢ X, g G, then
gxc X, Since G:GXX—~X, G is well defined on scalar
functions fe A°, and this action is denoted L., L,: L,

X A%— A°.

Since Ty and 7%, the tangent and cotangent bundles
of X, are isomorphic to the direct product of X with
itself, G has a well-defined transitive action on T, and
T¥. Since T, can be identified with AY(T,), while T}
can be identified with Al(T;), G acts in a well-defined
manner on AYTY), denoted L,, L,:L, XA~ A,

It is now necessary to extend the action of G to A?,
A% and A*, To illustrate how this is accomplished,
consider an orthonormal set of basis vectors
{e,, e,, e, €,} for Al (the extension to a general basis is
straightforward). ge, is the action of g on e, (k
=1,2,3,4) for some gc G; {e,=ge,} is a set of ortho-
normal basis vectors for A, Since {ei/\ e;1i=1,2,3,
j=2,3,4} is a basis for A%, {ge,Age;i=1,2,3;
j=2,3,4} is a basis for A*, and L,: L,XA?~ A? is the
well-defined action of G on AX(T%). Similarly, {ge,A

geNge,, i=1,2, j=2,3, k=3,4}is a basis for A%,
and {gell\gez/\g%/\ge‘i} is a basis for A%, which lead
to well-defined actions of G, L;: L, XA’ — A, and
L,:L,xA*~ A* This can be summarized as follows.

Proposition: The diagram shown below commutes
AL pr d a2 d pd d ps

Lol L11 Lzl Lal L41
AOI 4 ALY d’ A2’ d’ A3 d’ A4

Proof: Again, the proof has three parts. First, ob-
serve that d and d’ (the exterior derivative in the new
coordinates), as well as L, (¢=0,1,2,3,4) are well
defined on each chart of X. Second, note that d, 4’,
and L, (k =0,1,2,3,4) are well defined globally, using
the transition functions to smoothly piece together the
operators on overlapping coordinate charts. Third, the
verification the diagram commutes is straightforward,
because of the two preceding steps.

Since X has a well-defined inner product {a, b) is well
defined, where either ac A¥, be A¥, or ac A¥, xbec AVK,
Both the real and imaginary parts of all these inner
products remain invariant under the action of G. The
Hamiltonian and Lagrangian functions result from form-
ing linear combinations of these inner products, %*°

Example: In rectangular coordinates, the inner
products invariant under the action of G are

() (g, +ig,), *[(s, +is,) dxA dy/A dz/N\icdt])
=(g, +ig, (s, +is,)
(ii) {c(4,, +iA, ) dx + c(A,,+iA, Vdy + c(4,, +iA, ) dz
+(@, +ig JAicdt,
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s[(d,, +id,) dyA\ dzNicdt +(J,,, +id, ) dz/\dx/Nicat
+ (I, +id, ) dxA dyA icdt + c(p, +ip,) dx/\dy/\dz))
=c(A,, +iA NI, +id, )+ (A, +id NI, +id,)
+clA,, +iA MW, +id,,) - (@, +ie )clp, +ip,),
(iii) {c(D, +1B,) dy/\dz + c(D +iB ) dz/\dx
+¢c(D,+iB ) dx/\dy + (E, +iH,) dx/icdt
+(B,+iH ) dy/\icdt+(E,+iH ) dz/\icdt,
slc(D, +iB ) dyNdz + (D +iB ) dz/\dx
+¢(D, +iB,) dx/\dy +(E, +iH ) dx/\icdt
+ (B, +iH ) dy/\icdt + (E ,+iH ) dz/icdt])
=2{c(D, +iB)E, +iH )+ c(D, +iB)E +iH,)
+c(D,+iB)E,+iH )},

(iv) (g, +ig) [P =(g, +ig)Ng, +ig,),
) |c(4,, +A,)dx +c(A,, +iA, )dy +c(4,, +iA ) dz
+(gp,+i@ Jicdt|?
=c(A,, +iA, P +(4,,+iA, P +(A,, +iA, )]
+@,+iv,),
(vi) [[e(D, +iB,) dy/\dz + c(D, +iB ) dz/\dx
+¢(D, +iB ) dx/\dy + (E_ +iH ) dx/\icdt
+(E,+iH ) dy/Nicdt +(E_+iH ) dz/\icdt||?
=c*(D, +iB ) +(D,+iB ) + (D, +iB,)]
+(E, +iH )* + (E + iH )P +(E,+iH ),
(vii) |(J,, +id,,) dy/N\dz/Nicdt +(J,,,+id, ) dz/\dx/Nicat
+(d,,, +id,,) de/\dy/N\icdt + c(p, + ip,,) dx/\dy/\dz | ®
=(d, Hid, P+ (I, +id, )+ (J,, +id,,)
+c*p, +ip,,),
(viil) | (s, +is,) dx/\dy/\dz/\icdt 2=(s, +is,)>.
Remark: (i), (iv), and (viii) are often overlooked
invariants, (cf. Refs. 5,6).
V. VARIATIONAL PRINCIPLES

For the sake of completeness, as well as to have an
alternate interesting way in which to view the mathema-
tical structure in electrodynamics, a Lagrangian and
Hamiltonian formulation will now be discussed. The
results presented here are more complete than any
other of which the author is aware,5® and illustrate a
new relationship between dynamics based on exterior
calculus and dynamics based on a calculus of variations
approach. Since many excellent treatments®® can be
found in the literature on Lagrangian and Hamiltonian
dynamics, but few good examples can be found on how
to apply this knowledge, the general discussion is
cursory, while the example is dwelt on at length.

The Lagrangian function L is defined as
L: MT*X))XA(T*(X)) ~R,

L =3RE(+ (uy, *ouy) +{ty, %oty) — (U, %oy} — (g, ¥ty
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TABLE 1 TABLE @I
Generalized Components of associated Generalized Components of associated
coordinate generalized momentum coordinate generalized momentum
x 9y z ict x y z ict
£e o Iy e —iCPy E, 0 —CA,, cAgy 0
igm i pe idy e ~CP¢ E, CAg, 0 —CA,, 0
E, —CcA,y, cA,, 0
ich —i‘pm 0 0 CAex
icB, 0 —ip, 0 cAg,
+ <u4, *°u0>), iCB‘ 0 0 —i(pm CAez
. iH, 0 —iCA g icA 0
where RE(a+ib)=a, a,bcR. i, 1CA g 0 —iCA 0
. . iH, —icA icA 0 0
In order to specify L on a chart of a manifold, one eD, e 0 icA
must give the local coordinates of the chart, all ele- cD, 0 —@, 0 ia4::
ments in A(7*(X)) and all partial derivatives of ele- cD, 0 0 -9, icA,,

ments in A(T*(X)) with respect to local coordinates. The
elements in A(T*(X)) are called generalized coordinates
while the partial derivatives are called genevalized
velocities.

The genevalized momenta are defined as the partials
of L with respect to the generalized velocities. The
Hamiltonian function H is derived from L by computing
the inner product of the generalized velocities with
their respective generalized momenta and then sub-
tracting the Lagrangian L; this transformation is called
a Legendre transformation. The Hamiltonian function H
is specified on a chart of a manifold by specifying co-
ordinates on the chart, the generalized coordinates and
the generalized momenta.

Solutions to Maxwell’s equations are extremals to the
action integral

[P LdeyNdeyp\ deyp\de,,

where the integral is evaluated along a space—~time
trajectory beginning at point 1 and ending at point 2,
and de,Ade,Ade,Ade, is a unit basis vector for A%
For a more complete and precise discussion of how to
evaluate this integral, the reader is referred to the
bibliography (Spivak,'° Loomis-Sternberg,'* Warner”).

Given a Lagrangian function, a well-defined recipe
due to Euler and Lagrange exists for finding the asso-
ciated equations of motions whose solutions are ex-
tremals to the action integral. Given a Hamiltonian
function, a well-defined formula due to Hamilton exists
for finding the associated equations of motion. Since
both these approaches are independent of the constitu-
tive relations, but depend only on the underlying differ-

to be totally geometric or topological in nature, inde-
pendent of matter or vacuum.

Example: The Lagrangian function L is
L=-(cD +E, +cD,+ E,+cD,-E)+(cB,-H, +c¢B,-H,

+cB,H))-(g,s,—8,5,)~(cA J, . + cAmyJey
+ CA"IZJBE + (pe ° cDe) + (CAGX'JW + CAemey + cAeszz

+@ et CP,)-

(A) The generalized coordinates are g, and ig,. The
generalized velocities are all partials of g, and ig, with
respect to x, v, z and ict. The x component of the gen-
eralized momentum associated with g, is

8L AL 3cA,
9(ag,/ax) " acA,, od(ag,/ox)

Note that to compute the generalized momentum it is
necessary not only to compute (3L/3cA ) but also to
know from Maxwell’s equations that dcA, /3(dg,/dx)
=+ 1. In like manner it is straightforward to find all
the generalized momenta, and the results are summar-
ized in the Table I.

x component = Y -

The Hamiltonian function H is
Hy=~(cB,*H +cB,+H,+¢B,"H)+(cD +E +cDE,
+¢D, E)=(2,5n=8nSs)

and is independent of the generalized momentum. The
Euler~Lagrange equations of motion are

entlabl.e man1fo}d and its a§socmted .vecto.r fields, the g, S, - _@_(Jm) - 'a—(me) - ‘a‘(sz) - _..a -icp, =0,
resulting equations of motion are said, picturesquely, ox ay 0z dict
TABLE II TABLE IV
Generalized Components of associated Generalized components of associated
coordinate generalized momenta coordinate generalized momentum

» z ict y z ict
cA, 0 E, -E, icB, Iz & 0 0 0
cA,, -E, 0 E, icB, Ty 0 2o 0 0
cA,, E, -E, 0 icB, Ima 0 0 g 0
i@y —icB, —icB, —icB, 0 P 0 0 0 -,
iCApy 0 iH, —iH, D, i igy, 0 0 0
iCA py —iH, 0 iH, cD, Z.J ey 0 i8m 0 0
icAp, iH, —iH, 0 cD, id,, 0 0 igm 0
@, —cD, —cD, —cD, 0 P, 0 0 0 —igm
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TABLE V
Generalized Components of Associated
Coordinate Generalized momentum

x Y 2 ict
Sm 0 0 0 0
is, 0 0 0 0

. . 0 ;. 0 ,. 0 ,. a
ig,: is,— 5(1JH) - a—y—(zJey) - gz(zJM) = 5ief ~CP.=0

The Hamiltonian equations of motion are identical:

dH d 2 Gl 2 B

—_— - —— — — + — —_—

2, S, = <ax S 3y I oy " ot el ch,,,),

oH . /3 Gl 2 2

—_— — ) —1 —_ 4+ -4 —_— .
vz, = is, \asz'-”‘-l- aleev Py iJ,,+ vict cpe>

Since the Hamiltonian is independent of the generalized
momentum, the dual equations involved derivatives of
H with respect to momenta are all zerc. Note these
equations are identical to those in Sec. 2, Eq. (4).

(B) The generalized coordinates and generalized
momenta are tabulated in Table II.

The Hamiltonian function H is
Hy=~(cD,+E ,+cD - E +cD,*E)+(H, -cB,+H cB,
+H, cB)-(g,5,~8,5.) —(cA, *d, +cA, -J,
teA,, J F0,cp,)H(cA, d, teA, d,,
+eA, J,, P, cp,).

The Euler—Lagrange and Hamiltonian equations of
motion are found in Sec. 2, Eq. (3).

(C) The generalized coordinates and generalized
momenta are tabulated in Table III.

The Hamiltonian function H is
Ho=—(eBH +cB,H +cB,-H)+(cD,-E +cD E,
+ CDz ) Ez) - (gesm _gmse)'
The Euler—Lagrange and Hamiltonian equations of
motion are found in See. 2, Eq. (2).
(D) The generalized coordinates and generalized
momenta are tabulated in Table IV.
The Hamiltonian function H is
HD=(cDx *E, +(:Dy-Ey+ch-Ez) —(cBr *H, +cBy-Hy
+c¢B,-H)+ (cAmeex +cA_J

my-ey

+ CAszez + (pe * Cpe)

(Vyy ey vi+o], 00, 0) = (v, ..

(Vs eesavy, ., v) =alvy,. o0 ,0,,..00,0,)

The quotient space T*=V*/S(V*), the set {x: (y —x)
€ S(V®), for all yc V¥, is called the set of kth order
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~(cA,J

ex” mx

+cA, J,, T A, +O . cp,).

The Euler—Lagrange and Hamiltonian equations of mo-
tion are found in Sec. 2, Eq. (1).

(E) The generalized coordinates and generalized
momenta are summarized in Table V.

The Hamiltonian function H is
Hy=-L
=~(cB,*H_+cB+H,+cB,-H)+(cD,-E,+cD -E,
+¢D,"E) = (g, —&nSs) = (€A, d .. +cA,

ey’ my

J . +cA J

my- ey mz-ez

+@,00,).

The Euler—~Lagrange and Hamiltonian equations of
motion are

ge=0$ igmzo'
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APPENDIX: MATHEMATICAL PRELIMINARIES

This section is largely tutorial, sketching some of the
fundamental concepts of multilinear algebra, differen-
tiable manifolds, and exterior calculus. Suitable refer-
ences can be found in the bibliography (Nelson,!?
Warner,” Spivak,'® Loomis-Sternberg!?!).

A. Multilinear algebra

Let R denote the real numbers, and let V and W be
finite-dimensional real linear vector spaces. V* denotes
the dual space of V, consisting of all real valued func-
tions of V. The direct product of V with W is denoted
VXW and consists of all linear combinations of pairs
(v,w), with v V and we W. The k-fold direct product
of V with itself, denoted V*, the I-fold direct product of
V* with itself, denoted V*!, and the mixed direct
product of V*xV*! gre defined in an identical fashion.

Let S(V¥) be the subspace of V* generated by the set
of all elements of the form

" >
7Uk) U,‘;U;:Ui eV, i=1---k,

ac R.

contravariant tensors. In a similar manner, the
quotient space T*m—=V*™"/S(V*™) can be defined, and is
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called the set of mth order covariant tensors. Finally,
the quotient space of mixed tensors, T *m=V*t*m/
S(V#*m) can be defined in an analogous fashion. The
terms contravariant and covariant will in general be
dropped, being clear from context (cf. Spivak,'® pp.
4—8 to 4—12). The direct sum T(V), denoted by &,

é Thy%m

m=0

T(V)=TO*XQ T ¥ T * g =P

k=

o

where T%*°=R, is called the tensor algebra of V. Con-
sider an element in T*(V), denoted A; A is called
| alternating or skew-symmetric if

Ay ooy Uy ey Ve, 1) ==Alvy, .o yv 00,0, ..

The set of all alternating kth order tensors is denoted
AXV), and is clearly a subspace of T*(V). IfL:V -~ W
is a linear transformation, then L* : T*(W) — T*(V) is
defined by (L*<T*)(v,,...,v,)=T}L(v,),...,L(v,)]. In
particular, if L :V— W, then

L*/\o) = (L* @)L *@));

AWVY=A’(V)® « - - @ A(V), n equals dimension of V, is
the contravariant exterior algebva of V, while A(V¥)
=A(V¥)® o« & A(V*) is the covariant exterior algebra
of V [which is defined in 2 mamner entirely analogous to
A(V)]. This work will concentrate entirely on exterior
algebra. Multiplication in the exterior algebra A(V) is
denoted by “/A ” the exterior or wedge product, a
natural generalization of the three-dimensional cross
product operation on two vectors. The exterior algebra
is a graded algebra: if uc A*(V), ve A(V), then u/\v

€ A*!(V). The exterior product obeys the following
properties:

)

Yo,...,v,€ V.

u\v= (=172 Au,
(uy + )\ = (2, A\0) + (1, \0),
u N\, +9,) = (w/\v,) +(u\v,),
N A\w) = (u\v)A\w,
(aw)\v =u/\av) = aluf\v]

If{e,,...,e,} is a basis for V, then {e;, N+ -
iyliy,...,i,=1,...,n}is a basis for AYV). In

particular, note that ey -« <Aei, Gy,...,0,=1,...,n)
is a basis vector for A"(V). Since A™(V) is one-dimen-
sional, the sign on this basis vector can be either
positive or negative, corresponding to a choice in
orientation (cf. “right-handed” and “left-handed” co-
ordinates in R®).

u, Uy, u, € A(V),
v, 01,0, € ANV),
we A™(V),

acR.

Let{,):VXV —R be the standard sum-of-squares
innev product on V, positive definite and symmetric in
its arguments. Choose an orthonormal basis for V,
{e1, ... e, Letae A(V), be AHV),

a= i1<-Z-><tk aliys .-y d)ey, N -/\e,k, aléy,...,i,) ER,
b=¢1<;<i,b(i1"'"i’)eil/\“'/\e‘z’ by, ... i) €R,

the inner product of g and b, denoted (a, b) is defined by

(a,B)= {{K.Z.;Gk aliys -+, 80lEn, - i )ey €40 o ey, e), k=1,
,by=

0,

The Hodge star operator, denoted *,x: A¥V)—~ A"¥(V),
is well defined by the requirement that for any orthonor-
mal basis e;,...,e, 0of V,

*: (et Nep) =+ (eka—l/\’ ‘ '/\en)s

where the plus sign is chosen if +e,/\- . ~/\e,,/\e,M
/\-- /e, is in the basis for A"(V), and the minus sign
is otherwise chosen.

The requirement on the inner product and Hodge star
operator that the basis be orthonormal can be relaxed,
and the interested reader is referred to the bibliography
(Warner,? Flanders, ! Loomis-Sternberg, '* Spivak'®).

Example (R®): Choose a rectangular set of orthonor-
mal basis vectors {u,, u,,u,}:

A(R?®) Basis
AYRH1
AR uy,u,,u,

Az(Ra) Uu y/\uz, u;/\ux, uxAuy
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k#1.

D AE) A

Dual Forms
Py

s, =, Ny,

1, =1, /\us,

*u, =u.Nu,,

A zero form may be interpreted physically as a
scalar, while a 1-form may be interpreted as a directed
line segment, a 2-form as a directed area, and a 3-
form as a directed volume.

*u, \u, =1u,,
*u,\u,=u,,
*uxAuy =Uy,

*ux/\uy/\uz =-1,

Example (Space—Time): (For an extensive discussion
of the mathematics underlying space—time, the reader
is referred to Penrose. %) Choose a rectangular set of
orthonormal basis vectors {dx,dy,dz, icdt} where i
=v=T and ¢ = speed of light, with orientation
+dx/AdyA dz/\icdt:
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A (Space—Time) Basis
A° 1
Al dx, dy, dz, icdt
A dy/\dz, dz/N\dx, dx/\dy, dx/N\icdt, dy/Nicdt, dz/\icdt
A3 dy/\dz/Nicdt, dz/\dxNicdt, dx/N\dy/N\icdt, dx/\dy/\dz
A dx/N\dy\dz/\icdt

Dual Forms
*1 =dx/N\ay/\dz/\icdt,
*dx =dy/\dz/N\icdt,
*dy = dz/\dx/N\icdt,
*dz =dx/\dy/\icdt,
*icdt = - dx/\dy/\dz,
*dy/\dz =dx/Nicdt,

*dx/Nicdt = dy/\dz,

*dy/\icdt =dz/\dx,

*dz/N\icdt = dx/\dy ,
*dy\dz/\icdt = - dx,
*dz/\dx/N\icdt = -dy,
*dx/\dy/\icdt = - dz
*dz/\dx =dy/N\icdt, *dx/\dy/\dz = icdt,
*dx/\dy =dz/\icdt, *dx/\dy/\dz/\icdt =1.

Note: #oxoy, =(~ 1)y, u,c A%, £=0,1,2,3,4.

B. Differentiable manifolds

Let X be a set, U an open subset of X, and m a map,
m :U—~ VCR" where m is bijective (one-one and onto).
The pair (m, U) defines a chart on X; m specifies local
coordinates on a subset of X. Consider two charts on
X, (m,, U,) and (m,, U,); suppose m,m3', mym;* : R"— R"
are C* functions, i.e., differentiable 2 times but not
(B +1). m,m;' and m,m* are called transition functions.
A collection of charts on a set X is denoted A; A is
called an atlas for X if the chart domains cover X, and
the associated transition functions have open domains
and are C°. A complete atlas is the union of all possible
atlases for a set X. A differentiable manifold is a set X
together with a complete atlas. Intuitively, a differen-
tiable manifold is a union of nondisjoint sets, each of
which is locally diffeomorphic to R”, which is pieced
together by the transition functions.

Let X and Y be differentiable manifolds. Choose any
chart on X and Y with coordinate maps m, and m,,
respectively. Then f: X —Y is defined by the composite
map m;lofom,. Let p be a point in R, v a vector in R".
To every function f defined in the neighborhood of p,
associate a number called the directional derivative of

_f in the direction v at p, denoted D, A(p) and defined by

D,p)=L 1o +10) g

Consider now the manifold X; the tangent vector to X at
p in the direction v is a map which associates with
every C*® function f, defined on a neighborhood of p, a
real number D _f(p) such that

(i) fi=f, implies D, f,(p) =D, f,(p),
(ii) D(f+g)p)=D, f(®)+D, g(p),
(iii) D(f-2@)=[D,f@)lg@®) +r@)(D,g®)].
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The tangent space of X at p is the set of all tangent vec-
tors, for all v R¥, The tangent space of X at p can be
shown to be a vector space, and thus has an associated
dual vector space, called the cotangent space of X at p,
the set of all linear functjonals on the tangent space.
The tangent bundle of a manifold X is the direct product
of the set of all tangent spaces at all points p € X the
cotangent bundle is the direct product of the set of all
cotangent spaces at all points p € X with X. A Riemann-
ian differentiable manifold is a differentiable manifold
with a prescribed norm on the tangent bundle.

Example: Let X be a finite-dimensional vector space.
Choose a basis for X, {e,,...,e,}, 50 x€ X can be ex-
pressed as x=x,e, ++ -+ +x,e,. Define the coordinate
map m(x,e; ++ - +x,e,)=(x,...,%,). An atlas for X is
the set of coefficients, with respect to the basis
{e,+-e,}, of all points x € X. A second atlas for X is
the set of coefficients, with respect to a different basis
{e{,...,e.}, of all points xe X. The transition functions
are given by a C” linear transformation describing the
change of basis. A complete atlas can be generated by
considering all possible sets of basis vectors for X;
thus, X is a differentiable manifold. The tangent space
and cotangent space of X at a point p are clearly n-
dimensional, so the tangent bundle and cotangent bundles
are locally diffeomorphic to R?". Together with the
standard Euclidean norm on the tangent bundle, X is a
Riemannian differentiable manifold.

C. Exterior calculus

If f:R"—R is a scalar differentiable function of »
variables, then f is a zevo differvential form, or O-form.
The total differential of f, df(x,,...,x,) =(3f/0x)dx,
++++ +(3f/9x,) dx, is called a one differential form or
1-form if each component 9f/dx,, k=1,...,nis
differentiable. Note that f may be considered in A°,
while df is an element of A!. The exterior devivative
generalizes the concept of a total differential using
exterior algebra:

Theorem'®: Let uc A*. Then the exterior derivative
of u is due A*!, and is defined by

ax, A --Nax,,

du= 27 du;
IRIIn Lreeesip

where dui,,  ;, is the total differential of the ¢, com-
ponent of #, and the exterior derivative d obeys the
following properties:

(1) d(u+v)=du+dv
(i1) d(w/\v) =duN\v +(-1u\dv)> uc A* ve Al
(iii) d(du)=0=ded=0
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A differential form # is called closed if du=0, exact if
dv =u; it can be shown every exact form is closed, but
the converse is not true. The adjoint 6 of the exterior
derivative is defined such that

{du,v) =(u, bv), ucA*, ve A,

It can be shown 0 =x*odox. A differential form is called
coclosed if 6u=0, coexact if v =u. The Laplace—
Beltrami operator is defined as A=db6 +8d, and is
linear, A:A*—A*(£=0,...,n). Elements in the kernel
of A are called Zarmonic, and the set of all such k-
forms is denoted H*={u: Au=0, uc A*}. It can be shown
the Laplace—Beltrami operator is elliptic (Warner’,

pp. 250-251).

A question of great practical interest is solving Az
=v, given v subject to suitable boundary conditions.
For the special case where the underlying manifold X
is compact, this question has been answered by

Theorem” (Hodge—DeRham—Kodaira): Ax=v has a
unique solution € A* iff » € A* is orthogonal to H*.
Furthermore, A* can be decomposed into a direct sum
of three mutually orthogonal vector spaces,

AR =H*® A(A)
=H*@®(d5 + 6d)(A")
=H* @ d(A*) ®6(A*)
and H* is finite -dimensional.
Example (R%): A° L A4 AZ4 A3,

For simplicity choose a rectangular orthonormal
basis {dx,dy,dz} with orientation +dx/\dy/\dz. Then

9fo dfo dfo N
= o = + + = s
fo€ A, dfy Ix dx _ay dy 3z dze A5

fi=fidx+fi,dy +fi,dzc A,

2 .
af, = (%%dx + afly ay + %) Adx

(ag” dx + af‘” dy + af”)/\dy

aflz aflz aflz
+ L — + — &
(a dx + 2y dy 9z dz)A\dz

:(.all_‘._ QL)dy/\d +<af” - gL-)d zA\dx

ay 0z 0z ox

ofry 3_11_) c A
+(ax %y dx/N\dy € A%

fo=toxdv/\dz + fo,d2/\dx + fo,dxA\dy € A?,

dfy= (afzx dx +— afzx dy + afz" dz>/\dy/\dz
af2y af2:v af2y )
—_ ——— + —_—
+<ax dx + 2y dy 7z dz) dz dx

afZZ 8]2, 8)25 )
L2 + L=E + LZ£
+< y” dx 3y dy 2z dz}/N\dx/Ady

(e

af2,> 3
+ L2 c A3
ox T oy rys Adx/N\dy/N\dz e A3

fadx\dyNdzc A3, df,=0.
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Similarly, it can be shown that

Ofy = %dy/\dz + %vdz/\dx + %dx/\dy € A%,

_(%fee _ Oy (a_f___zf_) (i_i) .
5f2—<ay 9z dx + dz dx dy + 2x 3y €A,

of, = af1x+aa—‘fy1y-+afl;—A ’

of,=0.
Thus, the exterior derivative subsumes the operations
of gradient, curl, and divergence. The Laplace—
Beltrami operator A=d6 + 06d simplifies for this choice
of basis. Define D =-(2%2/3x% +23%/3y® +9%/32%), so

92 92 92
Afy=- <£2' + 5)? g)fo=Dfoa
Afl = (Dflx) dx +(Df1y) dy + (Dflz) dZ,
Af, =(Df,,) dy/\dy +(Df,,) dz/\dx +(Df,,) dx/N\dy,
32 32
Afy=—~ <a—xz— + 53?

If the manifold is restricted to a compact subset of R?,
then the Hodge—DeRham~—Kodaira decomposition
theorem shows that

fo=1 ® 1S,
= ®dfy® oy,
fo=1 ®dff @ ofyf,
fo=f3 ®dff,

where the superscripts H, E, and C denote harmonic,
exact, and coexact, respectively. To be more explicit,

fo=rfE @ 6(fodx+fSdy +fSdz)
2 d 0
:fohr€B l:a—x-flcx + a_jjfl‘i + 5;7:10::] ’

fi=ffodff @ o fLay/\dz +1Sdz/\dx +£S dxAdy)

+ %) f2dx/\dy/\dz =(Df,) dx/\dy/\dz.

2 2 2
=i ® [a—,;ffdﬁ sy fody+ gfoEdZ]

0 0 9 0
® [(@fz‘i - 5;fz‘§> dx +('a";fz‘i— 5;_1‘20,) dy
i3
+(axf2y anyx dz b
Ja =f2”€Bd[f£dx +f1€dy +f1Ezdz]® 5[fscdx/\dy/\ dz]
d ad
=f® [(@fﬁ - 5;]{11‘;) dyAdz
9 p_0 (& <i E_ 0O E>
+<8zf1"— axfl;) dz/\dx + Ey" fiy ayf"‘ dx/N\dy
i C _@_ c _a__ (o]
& [ax FEdyN\dz + 5 fidzNdx + 3./ dx/\dy|,
fo=rE @dl fEay\dz +rEdz/\dx +rE dx/\dy]
s fayt %fﬁ) dx/\dy/\dz].

9 d
__fH Y _rE
—f3 ®[<axf2x+ay

For the special case where the manifold is simply
connected,

foH = const, f1H =0,
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=0, f¥=(const)dx\dy/\dz.

In other words, any scalar O-form can be written as
the sum of a constant function plus the divergence of a
function, any 1-form can be expressed as the curl of a
vector valued function plus the gradient of a scalar
function, any 2-form can be written as the curl of a
vector valued function plus the gradient of a scalar
function, and any 3-form can be written as the sum of
a constant function plus the divergence of a vector
valued function.

A second approach to this decomposition is to expand
each 7, (k=0,1,2,3) in eigenfunctions of the Laplace—
Beltrami operator:

fo =fo” + Z;ll (fos 5u?)6u?,

fi= 2 s du)dul® + Zl (fr, 0u3°)0u3C,
i=. 1=

Jf2= Z (fa» duy®) d“tE +2 (fos 5u:;c>5ugc’
=1 i=1

Fomrt + 3 o i) .

The i}, j=1,2,..., i=0,1,2,3 are eigenfunctions of
the Laplace—~Beltrami operator

A:AP—~AF, §=0,1,2,3,
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i_ i
Ani=Nu;.

Various properties of these eigenfunctions are dis-
cussed in the text.
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